
Vibrational heat capacities of solids [tln57]

The interaction between atoms is attractive at long distances and repulsive
at short distances. The lowest-energy configuration of a macroscopic system
of N atoms is a perfect lattice. This is the equilibrium state at T = 0. It
has zero entropy. Heat input δQ = CdT causes lattice vibrations. In the
following we study vibrational heat capacities in successively improved ap-
proximations.

Atoms bound to rigid lattice by harmonic force (classical model):

The theory of Dulong and Petit considers an array of N classical 3D harmonic
oscillators with identical frequencies. The resulting vibrational heat capac-
ity, C = 3NkB, is T -independent and is calculated in exercise [tex74] for a
microcanonical ensemble and in exercise [tex78] for a canonical ensemble.

The main insufficiency of the Dulong-Petit result is that C does not approach
zero in the low-temperature limit, in violation of the third law.

Atoms bound to rigid lattice by harmonic force (quantum model):

The theory of Einstein considers an array of N quantum 3D harmonic os-
cillators with identical angular frequencies ω. The resulting vibrational heat
capacity,

C =

(
ΘE

T

)2
3NkBe

ΘE/T

(eΘE/T − 1)
2 , kBΘE = ~ω,

goes to zero exponentially in the low-T limit, C ∼ e−ΘE/T , and approaches
the Dulong-Petit result, C = 3NkB, at high T . Einstein’s result is derived
in exercise [tex75] for the microcanonical ensemble and in exercise [tex82] for
the canonical ensemble.

The main insufficiency of Einstein’s result is that it contradicts experimental
evidence, which suggests C ∼ T 3 at low T .
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Atoms interacting via harmonic force:
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Here {Aij} is the dynamical matrix. The second equation results from a
transformation to normal-mode coordinates. In the present context the nor-
mal modes are sound waves (phonons).

Quantum mechanically, this system is an array of 3N independent harmonic
oscillators with normal mode frequencies ωi:

H =
3N∑
i=1

~ωi
(
ni +

1

2

)
, ni = 0, 1, 2, . . .

The resulting Helmholtz free energy (in generalization to the result derived
in [tex82]) reads:

A =
1

2

3N∑
i=1

~ωi + kBT
3N∑
i=1

ln
(
1− e−β~ωi

)
.

In Debye’s theory, the normal modes, which, in general, consist of multiple
branches of acoustic and optical phonons, are replaced by a single branch of
sound waves with linear dispersion ω = ck as is expected in a continuous
isotropic elastic medium.

Total number of modes: 3N (same as in original lattice model).

Density of modes in k-space: V/(2π)3.

Number of polarizations: 3 (2 transverse, 1 longitudinal).

Number of modes in dω: n(ω)dω =
V

8π3
(3)(4π)

ω2

c2

dω

c
=

3V

2π2c3
ω2dω.

Debye frequency:
3V

2π2c3

∫ ωD

0

dω ω2 = 3N ⇒ ω3
D =

6Nπ2c3

V
.

Density of modes: n(ω) =
9N

ω3
D

ω2.

The resulting vibrational heat capacity is calculated in exercise [tex83] and
does show the experimentally observed ∼ T 3 behavior as T → 0:

C = 9NkB

(
T

ΘD

)3 ∫ ΘD/T

0

dx
x4ex

(ex − 1)2 , ΘD = ~ωD/kB.
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