Carnot engine [tln11]

Second law: Heat flows spontaneously from high to low temperatures.

Thermal contact: Temperature differences disappear without producing work.

Heat engine: Part of the heat flowing from high to low temperatures is converted into work via a cyclic process.

Carnot engine: All wasteful heat flows are eliminated (reversible processes).

The four steps of a Carnot process:

- 1 \rightarrow 2: Isothermal absorption of heat: $\Delta Q_{12} > 0$ at Θ_H .
- 2 \rightarrow 3: Adiabatic cooling: $\Theta_H \rightarrow \Theta_L$ with $\Delta Q_{23} = 0$ and $\Delta W_{23} < 0$.
- 3 \rightarrow 4: Isothermal expulsion of heat: $\Delta Q_{34} < 0$ at Θ_L .
- 4 \rightarrow 1: Adiabatic heating: $\Theta_L \rightarrow \Theta_H$ with $\Delta Q_{41} = 0$ and $\Delta W_{41} > 0$.

Total heat input: $\Delta Q_{in} = \Delta Q_{12}$.

Use first law: $\Delta U = \Delta Q_{12} + \Delta W_{12} + \Delta W_{23} + \Delta Q_{34} + \Delta W_{34} + \Delta W_{41} = 0.$

Net work output: $\Delta W_{out} \equiv -\Delta W_{12} - \Delta W_{23} - \Delta W_{34} - \Delta W_{41} = \Delta Q_{12} - |\Delta Q_{34}|$

Efficiency:
$$\eta \equiv \frac{\Delta W_{out}}{\Delta Q_{in}} = 1 - \frac{|\Delta Q_{34}|}{\Delta Q_{12}}.$$

