
[mex32] Static frictional force of constraint

Consider a hoop of mass m and radius r rolling without slipping down an incline. (a) Determine the Lagrangian $L(x, \dot{x})$ of this one-degree-of-freedom system. Derive from it the Lagrange equation and its solution for initial condition $x_0 = 0, \dot{x}_0 = 0$. (b) Determine the alternative Lagrangian $L(x, \theta, \dot{x}, \dot{\theta})$ and the holonomic constraint $f(x, \theta) = 0$ that must accompany it. Derive the associated three equations of motion for the two unknown dynamical variables x, θ and the undetermined Lagrange multiplier λ . Solve these equations for the same initial conditions as in (a) and determine the static frictional force of constraint between the hoop and the incline.

Solution: