[mex271] Linear central force potential

Consider a compact particle of mass m orbiting in the linear potential $V(r) = \kappa r$.

(a) Construct the Lagrangian $L(r, \dot{r}, \dot{\theta})$ and infer from it the Routhian $R(r, \dot{r}; \ell)$.

(b) Find the angular momentum ℓ and the energy E of a circular orbit with radius r.

(c) State Kepler's third law (relation between radius r and period τ) for circular orbits in this potential.

(d) A generic orbit of angular momentum, ℓ and E will undergo radial motion between minimum radius $r_{\rm P}$ (periapsis) and maximum radius $r_{\rm A}$ (apsis). Establish a relation from which $r_{\rm P}$ and $r_{\rm A}$ can be determined for given E and ℓ .

Solution: