[mex183] Quality factor of damped harmonic oscillator

(a) Consider the driven harmonic oscillator, $m\ddot{x} = -kx - \gamma \dot{x} + F_0 \cos \omega t$, in a steady-state motion. Use the parameters $\beta \doteq \gamma/2m$, $\omega_0 \doteq \sqrt{k/m}$, $A \doteq F_0/m$. In [mex182] we have calculated the maximum (averaged) power input, $P_{max} = \langle P(\omega_P) \rangle$, and in [mex181] we have calculated the average energy $\langle E(\omega) \rangle$ stored in the oscillator. Determine the quality factor of the driven oscillator defined as $Q = 2\pi \langle E(\omega_P) \rangle / \langle P(\omega_P) \rangle \tau$ with $\tau = 2\pi/\omega_P$. Show that to leading or der in β/ω_0 the quality factor is equal to the amplitude ratio at resonance and at zero frequency: $Q = D(\omega_R)/D(0)$. (b) Consider the harmonic oscillator, $m\ddot{x} = -kx - \gamma \dot{x}$, with weak damping $(\beta/\omega_0 \ll 1)$ and no driving force. Determine the quality factor Q of the damped oscillator defined as 2π times the ratio of the instantaneous energy stored, E(t), and the energy loss per period, $\tau | dE/dt |$. Evaluate the result to leading order in β/ω_0

Solution: