[mex150] Harmonic oscillator with friction

The equation of motion of a harmonic oscillator with Coulomb damping (friction) has the form

$$\ddot{x} + \alpha \operatorname{sgn}(\dot{x}) + \omega_0^2 x = 0,$$

where $\omega_0^2 = k/m$ is the angular frequency of the undamped oscillator and sgn(\dot{x}) denotes the sign (\pm) of the instantaneous velocity.

(a) Show that the solution for $n\pi \leq \omega_0 t \leq (n+1)\pi$, n = 0, 1, 2, ... and $x(0) = A_0 + \beta$, $\dot{x}(0) = 0$ has the form $x(t) = A_n \cos(\omega_0 t) + (-1)^n \beta$. Find the constant β , the maximum value of n, and the amplitudes A_n .

(b) For the case $\alpha = 1 \text{ cm/s}^2$, $\omega_0 = 1 \text{ rad/s}$, and x(0) = 9 cm, find the time it takes the system to come to a halt and the total distance traveled. Plot the phase portrait in the $(x, \dot{x}/\omega_0)$ -plane for this particular case.

Solution: