[mex127] Robustness of apsidal angles

(a) Given the result of [mex126], namely that nearly circular orbits at radius r = R of a central force potential V(r) have apsidal angle $\Delta \vartheta = \pi \sqrt{V'(R)/[3V'(R) + RV''(R)]}$, show that the only cases for which this apsidal angle is independent of the radius are the power-law potentials $V(r) = -\kappa/r^{\alpha}$, $\alpha < 2$, $\alpha \neq 0$ and the logarithmic potential $V(r) = \kappa \ln r$. (b) Show that the value of the apsidal angle is $\Delta \vartheta = \pi/\sqrt{2-\alpha}$, where the value $\alpha = 0$ pertains to the logarithmic potential.

Solution: