[mex12] Fixed points of the plane pendulum

Consider the equation of motion

$$\ddot{\theta} + 2\beta\dot{\theta} + \omega_0^2\sin\theta = 0,$$

where $\omega_0 = \sqrt{g/L}$ is the characteristic frequency and β is the damping parameter.

(a) Determine the nature of the two fixed points for (i) zero damping $(\beta = 0)$, (ii) weak damping $(\beta < \omega_0)$, (iii) critical damping $(\beta = \omega_0)$, and (iV) strong damping $(\beta > \omega_0)$.

(b) Use the Mathematica StreamPlot command or equivalent to graphically present the phase flow near the fixed point at associated with $\theta = 0$ for the cases (i)-(iv). Adjust the style and range of your graph such that the differences between the four cases are optimally visible.

Solution: