Orbits of Power-Law Potentials [msl21]

$$\begin{split} E &= \frac{1}{2}mv^2 + V(r) = \frac{1}{2}m\dot{r}^2 + \tilde{V}(r), \quad \tilde{V}(r) = V(r) + \frac{\ell^2}{2mr^2}, \quad E > \tilde{V}(r) > V(r) \\ E &- V(r) = \frac{1}{2}mv^2, \quad E - \tilde{V}(r) = \frac{1}{2}m\dot{r}^2, \quad \tilde{V}(r) - V(r) = \frac{1}{2}mr^2\dot{\vartheta}^2. \end{split}$$
particle speed: $v \propto \sqrt{E - V}.$
radial speed: $|\dot{r}| \propto \sqrt{E - \tilde{V}}.$
angular speed: $r|\dot{\vartheta}| \propto \sqrt{\tilde{V} - V}.$

(i)
$$V(r) = -\frac{\kappa}{r^{\alpha}}, \quad 0 < \alpha < 2:$$

 $\tilde{V}(r)$ has minimum at $r_0 = (\alpha \kappa m/\ell^2)^{1/(\alpha-2)}$. $E = E_1$: unbounded orbit, turning point $(\dot{r} = 0)$ at $\tilde{V}(r_{min}) = E_1$. $E = E_3$: bounded orbit, turning points at $\tilde{V}(r_{min}) = \tilde{V}(r_{max}) = E_3$. $E = E_4$: circular orbit at r_0 : $\dot{r} = 0$, $\dot{\vartheta} = \text{const.}$

(ii)
$$V(r) = -\frac{\kappa}{r^{\alpha}}, \quad \alpha > 2:$$

 $\tilde{V}(r)$ has maximum at $r_0 = (\alpha \kappa m/\ell^2)^{1/(\alpha-2)}$. $E < \tilde{V}(r_0)$ and large r: unbounded orbit at $r > r_2$, where $\tilde{V}(r_2) = E$. $E < \tilde{V}(r_0)$ and small r: bounded orbit at $r < r_1$, where $\tilde{V}(r_1) = E$. $E > \tilde{V}(r_0)$: Unbounded orbit with particle spiraling through center. $E = \tilde{V}(r_0)$: Unstable circular orbit exists.

(iii)
$$V(r) = \kappa' r^{\alpha'}, \quad \kappa' = -\kappa > 0, \quad \alpha' = -\alpha > 0:$$

 $\tilde{V}(r)$ has minimum at $r_0 = (\ell^2 / \alpha' \kappa' m)^{1/(\alpha'+2)}.$
All orbits are bounded: $r_1 < r < r_2$, where $\tilde{V}(r_1) = \tilde{V}(r_2) = E$
 $E = \tilde{V}(r_0)$: circular orbit exists.

(ii)
$$\alpha = 3$$
:

(i) $\alpha = 1$ (gravitation):

(iii) $\alpha' = 2$ (harmonic oscillator):

[Goldstein 1981]