Action-Angle Coordinates ..

An elegant way of using Hamiltonian mechanics to solve a dynamical problem
is to search for a canonical transformation to action-angle coordinates,
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such that the Hamiltonian turns into a function of the actions alone:
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If such a transformation exists and can be found then the solution of the
canonical equations is simple:
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The inverse canonical transformation then yields ¢;(t) and p;(t).

Two or more degrees of freedom:

The existence of a transformation to action-angle coordinates is exceptional.
Such systems are named integrable. Nonintegrable systems exhibit symptoms
of Hamiltonian chaos (to be discussed later).

One degree of freedom:
Integrability is guaranteed. There exists a general prescription for finding
the canonical transformation to action-angle coordinates.

The prescription for two modes of bounded motion is discussed in detail:

e libration (oscillation) [mln93],

e rotation [mln94].

The two modes are realized, for example, in the plane pendulum. The ro-
tational motion can also be interpreted as unbounded motion in a periodic
potential.



