Canonical Transformations s

Canonical transformations (¢;p) — (Q; P) operate in phase space.

Notation: (QJp> = (QD <5 qny Py - 7pn) etc.

Not every transformation ¢; = ¢;(Q; P;t), p; = pi(Q; P;t) preserves the
structure of the canonical equations.

Canonicity of transformation (¢;p) — (Q;P) hinges on relation between
Hamiltonians H(q; p;t) and K(Q; P;t) such that
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Canonicity enforced via modified Hamilton’s principle [mIn83]:
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ZPQJ K(Q; P;t)| = 0.
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Generating function F(z;Y;t) depends on n old and n new coordinates.
For example: (2;Y) = (¢;Q), (¢; P), (1:Q), (3 P).

Total time derivative of F' has vanishing variation:
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Different generating functions for the same canonical transformation are re-
lated to each other via Legendre transform.

The four basic types of generating functions are
Fi(g;Qst) = F(g; Pit) — ZPQJ
= F3(p;Q;t) + ij%

= Fi(p; Pit) - ZPQﬁZm%-



Implementation of canonical transformation specified by Fi(q; Q;t):
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— [H(g;pt) — K(Q; P;t)] dt.

Comparison of coefficients yields
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Transformation relations:

e Invert relations P;(¢; Q;t) into ¢;(Q; P;t).
e Combine relations p;(q; @, t) with ¢;(Q; P;t) to get p;(Q; P;t).

Transformed Hamiltonian:

0
o K(Q;P;t) = H(q;p;it) + + Fi(q; Q;t).
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