Central Force Motion: One-Body Problem [mln67]

Reduction to one degree of freedom:

Consider a particle of mass m moving in a central potential:

Lagrangian:
$$L(\mathbf{r}, \dot{\mathbf{r}}) = \frac{1}{2}m\dot{\mathbf{r}}^2 - V(|\mathbf{r}|).$$

Conservation of angular momentum: $\mathbf{L} = \mathbf{r} \times m\dot{\mathbf{r}} = \text{const.}$

- Case $\mathbf{L} = 0$: One degree of freedom.
 - Purely radial motion: $\mathbf{r} \parallel \dot{\mathbf{r}} \implies L(r, \dot{r}) = \frac{1}{2}m\dot{r}^2 V(r).$
 - Energy conservation: $E(r, \dot{r}) = \frac{1}{2}m\dot{r}^2 + V(r).$
 - Reduction to quadrature (see [mln4]).
- Case $\mathbf{L} \neq 0$: Two separable degrees of freedom.
 - Motion in plane perpendicular to **L**.
 - Transformation to polar coordinates: $x = r \cos \vartheta$, $y = r \sin \vartheta$.
 - Lagrangian: $L(r, \dot{r}, \dot{\vartheta}) = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\vartheta}^2) V(r).$
 - Cyclic coordinate: ϑ .
 - Conserved angular momentum: $\ell = \frac{\partial L}{\partial \dot{\vartheta}} = mr^2 \dot{\vartheta} = \text{const.}$
 - Routhian: $R(r, \dot{r}; \ell) = L \ell \dot{\vartheta} = \frac{1}{2}m\dot{r}^2 \frac{\ell^2}{2mr^2} V(r).$
 - Effective potential for radial motion: $\tilde{V}(r; \ell) \doteq V(r) + \frac{\ell^2}{2mr^2}$.
 - Conserved energy: $E(r, \dot{r}; \ell) = \frac{1}{2}m\dot{r}^2 + \tilde{V}(r; \ell).$
 - Reduction to quadrature (see [mln4]).
 - Integral for angular motion: $\vartheta(t) = \vartheta_0 + \frac{\ell}{m} \int_0^t \frac{dt}{mr^2(t)}.$