Linearly Damped Harmonic Oscillator [mln6]

Equation of motion: $m\ddot{x} = -kx - \gamma\dot{x} \Rightarrow \ddot{x} + 2\beta\dot{x} + \omega_0^2 x = 0.$ Damping parameter: $\beta \equiv \gamma/2m$; characteristic frequency: $\omega_0 = \sqrt{k/m}.$ Ansatz: $x(t) = e^{rt} \Rightarrow (r^2 + 2\beta r + \omega_0^2)e^{rt} = 0 \Rightarrow r_{\pm} = -\beta \pm \sqrt{\beta^2 - \omega_0^2}.$

Overdamped motion: $\Omega_1 \equiv \sqrt{\beta^2 - \omega_0^2} > 0$ Linearly independent solutions: $e^{r_+ t}$, $e^{r_- t}$. General solution: $x(t) = (A_+ e^{\Omega_1 t} + A_- e^{-\Omega_1 t}) e^{-\beta t}$. Initial conditions: $A_+ = (\dot{x}_0 - r_- x_0)/2\Omega_1$, $A_- = (r_+ x_0 - \dot{x}_0)/2\Omega_1$.

Critically damped motion: $\sqrt{\omega_0^2 - \beta^2} = 0$, $r = -\beta$ Linearly independent solutions: e^{rt} , te^{rt} . General solution: $x(t) = (A_0 + A_1 t)e^{-\beta t}$. Initial conditions: $A_0 = x_0$, $A_1 = \dot{x}_0 + \beta x_0$.

Underdamped motion: $\omega_1 \equiv \sqrt{\omega_0^2 - \beta^2} > 0$ Linearly independent solutions: $e^{r_+ t}$, $e^{r_- t}$. General solution: $x(t) = (A \cos \omega_1 t + B \sin \omega_1 t) e^{-\beta t} = D \cos(\omega_1 t - \delta) e^{-\beta t}$. $D = \sqrt{A^2 + B^2}$, $\delta = \arctan(B/A)$. Initial conditions: $A = x_0$, $B = (\dot{x}_0 + \beta x_0)/\omega_1$.

The dissipative force, $-\gamma \dot{x}$, effectively represents a coupling of one low-frequency oscillator to many high-frequency oscillators.