Coordinate Transformations [mln58]

Galilei transformation:

$$x' = x - vt$$
, $y' = y$, $z' = z$, $t' = t$.

Lorentz transformation:

$$x' = \frac{x - vt}{\sqrt{1 - v^2/c^2}}, \quad y' = y, \quad z' = z, \quad t' = \frac{t - vx/c^2}{\sqrt{1 - v^2/c^2}}.$$

- Check time dilation: $t_2' t_1' = \frac{t_2 t_1}{\sqrt{1 v^2/c^2}}$ for $x_1 = x_2$. Proper time interval: $\Delta \tau \doteq t_2 - t_1$.
- Check length contraction: $x_2' x_1' = \frac{x_2 x_1}{\sqrt{1 v^2/c^2}}$ for $t_1 = t_2$ Proper length: $\ell_0 \doteq x_2' - x_1'$.
- Check relativity of simultaneity: $t' = t(x) = \frac{t vx/c^2}{\sqrt{1 v^2/c^2}}$. Clocks synchronized at x = x' = 0.

Longitudinal velocity addition:

Substitute $x = v_p t$ and $x' = v'_p t'$ into transformation equations.

- Nonrelativistic: $v_p = v'_p + v \implies v'_p = v_p v$.
- Relativistic: $v_p = \frac{v_p' + v}{1 + v_p' v/c^2}$ \Rightarrow $v_p' = \frac{v_p v}{1 v_p v/c^2}$.

Transverse velocity addition:

Set $y' = u'_p t'$ and $y = u_p t$ and $x = v_p t$, $x' = v'_p t'$. Then use y = y' and time dilation.

- Nonrelativistic: $u'_p = u_p$.
- Relativistic: $u'_p = \frac{u_p \sqrt{1 v^2/c^2}}{1 v_p v/c^2} \implies u_p = \frac{u'_p \sqrt{1 v^2/c^2}}{1 + v'_p v/c^2}.$