Longitudinal Doppler Effect [mln57]

Sound:

Transmitter T and receiver R moving with relative velocity v toward each other. Sound wave propagates with velocity v_s through medium. Transmitter emits $N_T = \nu_T \Delta t$ cycles at frequency ν_T in time Δt .

(a) Receiver at rest in medium:

Advance toward R of wave in time Δt : $N_T \lambda = (v_s - v) \Delta t$. Frequency received: $\nu_R = \frac{v_s}{\lambda} = \frac{N_T}{\Delta t} \frac{v_s}{v_s - v} = \frac{\nu_T}{1 - v/v_s}$.

(b) Transmitter at rest in medium:

Distance travelled by wave relative to receiver in Δt : $(v_s + v)\Delta t$. Distance travelled by wave relative to transmitter in Δt : $v_s\Delta t$. Receiver detects $N_R = \nu_R \Delta t$ cycles at frequency ν_R in time Δt .

Relation between N_R and N_T : $N_R = N_T \frac{v_s + v}{v_s}$. Frequency received: $\nu_R = \frac{N_R}{\Delta t} = \frac{N_T}{\Delta t} \frac{v_s + v}{v_s} = \nu_T (1 + v/v_s)$.

Light:

Transmitter T and receiver R moving with relative velocity v toward each other. Light wave propagates with velocity c relative to T and relative to R.

Transmitter emits $N_T = \nu_T \Delta t_T$ cycles at frequency ν_T in time Δt_T . Advance toward R of wave in time Δt_R : $N_T \lambda = (c - v) \Delta t_R$. Time dilation: $\Delta t_R = \Delta t_T / \sqrt{1 - v^2/c^2}$. Frequency received: $\nu_R = \frac{c}{\lambda} = \nu_T \sqrt{\frac{1 + v/c}{1 - v/c}}$.