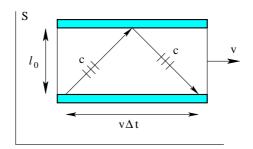
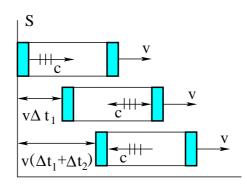
Relativity of Space and Time [mln50]


Frame S' moves with velocity v relative to frame S. Clock is at rest in frame S'. Distance traveled by signal in frame S': $2\ell_0$ (proper length ℓ_0).

Time period measured in frame $S': \Delta \tau = 2\ell_0/c$ (proper time).

Time dilation


Distance traveled by signal in S: $2\sqrt{\ell_0^2 + (v\Delta t/2)^2} = c\Delta t$.

Time period measured in S: $\Delta t = \frac{2\ell_0/c}{\sqrt{1-v^2/c^2}} = \frac{\Delta \tau}{\sqrt{1-v^2/c^2}}.$

Length contraction

Distance traveled by signal in S: $c(\Delta t_1 + \Delta t_2) = (\ell + v\Delta t_1) + (\ell - v\Delta t_2).$ Time period measured in S: $\Delta t = \Delta t_1 + \Delta t_2 = \frac{\ell}{c-v} + \frac{\ell}{c+v} = \frac{2\ell/c}{1-v^2/c^2}.$ Comparison with proper time and length: $\Delta t = \frac{\Delta \tau}{\sqrt{1-v^2/c^2}} = \frac{2\ell_0/c}{\sqrt{1-v^2/c^2}}.$ Length contraction: $\ell = \ell_0 \sqrt{1-v^2/c^2}.$

