
Orbital Differential Equation [mln46]
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Orbital differential equation:
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Initial conditions: u(0) = 1/rmin, 1/rmax, u′(0) = 0.

Like the orbital integral, the orbital differential equation describes the rela-
tion between the radial and angular coordinates of an orbit, a relation from
which the variable ’time’ has been eliminated.

While the orbital integral is most useful for calculating orbits of a given cen-
tral force potential, the orbital differential equation is particularly useful for
finding central force potentials in which given orbits are realized.

Applications:

• Kepler problem [mex48]

• Exponential spiral orbit [mex49]

• Circular orbit through center of force [mex50]

• Linear spiral orbit [mex52]


