Differential Constraints [mln37]

A general class of constraints can be expressed in differential form:

$$\sum_{i=1}^{n} a_{ji} dq_i + a_{jt} dt = 0, \quad j = 1, \dots, m.$$

n: number of generalized coordinates (Cartesian, polar, or other). m: number of independent differential constraints. n - m: number of degrees of freedom.

Integrability condition of differential constraints:

$$\frac{\partial a_{ji}}{\partial q_k} = \frac{\partial a_{jk}}{\partial q_i}, \quad \frac{\partial a_{ji}}{\partial q_t} = \frac{\partial a_{jt}}{\partial q_i}, \quad j = 1, \dots, m, \quad i, k = 1, \dots, n.$$

Holonomic constraints: Integrability condition is satisfied.

$$a_{ji} = \frac{\partial f_j}{\partial q_i}, \quad a_{jt} = \frac{\partial f_j}{\partial t} \Rightarrow f_j(q_1, \dots, q_n, t) = 0, \ j = 1, \dots, m.$$

A set of m generalized coordinates q_i can be eliminated.

Nonholonomic constraints: Integrability condition is violated.

All n generalized coordinates are required. The kinematic effect of a nonholonomic constraint is to restrict the direction of the allowable motions at any given point in n-dimensional configuration space. This restriction does not reduce the dimensionality of the configuration space.

Example: Disk rolling upright without slipping on horizontal plane.

None of these coordinates can be eliminated. It is possible to arrive at any configuration (x, y, α, ϕ) from any other configuration via a path that satisfies the two constraints.