Generalized Forces of Constraint
in Lagrangian Mechanics ..

Lagrangian: L(qi, ..., Gn, 1,y -« Gn, ).

Differential constraints: Z ajidg; +apdt =0, j=1,...,m.
i=1
Relations between virtual displacements: Z a;i6¢; =0, j=1,...,m.
i=1

The generalized forces of constraint, );, do not perform any work.

D’Alembert’s principle = Z Qi0q; = 0.
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= Z (Qi — Z )\jaﬁ> dq; = 0 for arbitrary values of A;.
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Choose the Lagrange multipliers \; to satisfy @; = Z Njaj;, i =1,...,n.
j=1

The d¢; can now be chosen independently because the constraints are enforced
by the generalized forces Q);.

The solution of the dynamical problem is then determined by the follow-
ing n + m equations for the n dynamical variables ¢; and the m Lagrange
multipliers A;:
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For holonomic constraints, f;(qi,...,¢qn,t) =0, j=1,...,m, we have
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Whereas holonomic constraints can be handled kinematically, i.e. via the
elimination of redundant coordinates, nonholonomic constraints must be han-
dled dynamically, i.e. via the explicit use of constraint forces.

In some cases, the generalized forces of constraint (); can be determined
without integrating the equations of motion.



