Decay of Particle I [mln102]

Particle at rest decays into two particles:

Decay energy: $\epsilon = E_{\text{int}}^{(0)} - E_{\text{int}}^{(1)} - E_{\text{int}}^{(2)}$ (change in internal energy). Masses of decay products: m_1, m_2 . Momentum conservation: $\mathbf{p}_1 + \mathbf{p}_2 = 0, \quad p_1 = p_2 \doteq p$. Energy conservation: $E_{\text{int}}^{(0)} = E_{\text{int}}^{(1)} + \frac{p^2}{2m_1} + E_{\text{int}}^{(2)} + \frac{p^2}{2m_2}$.

$$\Rightarrow \ \epsilon = \frac{p^2}{2m} = T_1 + T_2.$$

Reduced mass $m = \frac{m_1 m_2}{m_1 + m_2}$.

Kinetic energies:
$$T_1 = \frac{p^2}{2m_1} = \frac{\epsilon m_2}{m_1 + m_2}, \quad T_2 = \frac{p^2}{2m_2} = \frac{\epsilon m_1}{m_1 + m_2}.$$

- Decay products move in opposite directions.
- All directions of **p**₁ equally likely.
- Kinetic energies T_1, T_2 determined by conservation laws alone.

Particle at rest decays into three particles:

Decay energy: $\epsilon = E_{\text{int}}^{(0)} - E_{\text{int}}^{(1)} - E_{\text{int}}^{(2)} - E_{\text{int}}^{(3)}$. Masses of decay products: m_1, m_2, m_3 . Momentum conservation: $\mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_3 = 0$.

Energy conservation: $E_{\text{int}}^{(0)} = E_{\text{int}}^{(1)} + \frac{p_1^2}{2m_1} + E_{\text{int}}^{(2)} + \frac{p_2^2}{2m_2} + E_{\text{int}}^{(3)} + \frac{p_3^2}{2m_3}.$

- Relative directions between decay products constrained but not determined by conservation laws.
- Kinetic energies T_1, T_2, T_3 constrained but not determined by conservation laws.
- Maximum kinetic energy T_i limited by ϵ, m_i . \rightarrow [mex237]