Electric Potential from Electric Field in Two Dimensions

- Given is the electric field: $\vec{E} = -(2ax + by^3)\hat{i} 3bxy^2\hat{j}$ with a = 1V/m², b = 1V/m⁴.
- Find the electric potential V(x, y) via integral along a specific path:

Red path $(0,0) \rightarrow (0,y) \rightarrow (x,y)$:

$$V(x,y) = -\int_0^y E_y(0,y)dy - \int_0^x E_x(x,y)dx$$

$$= 0 + \int_0^x (2ax + by^3)dx = ax^2 + bxy^3$$
(0,y)
(X,y)

Blue path $(0,0) \rightarrow (x,0) \rightarrow (x,y)$:

$$V(x,y) = -\int_0^x E_x(x,0)dx - \int_0^y E_y(x,y)dy$$

= $\int_0^x (2ax)dx + \int_0^y (3bxy^2)dy = ax^2 + bxy^3$

