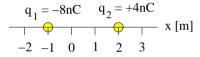
Unit Exam I: Problem #1 (Fall '19)



Consider two point charges positioned on the *x*-axis as shown. Use $k = 9 \times 10^9 \text{Nm}^2\text{C}^{-2}$.

(a) Find the electric potential at x = 0 and x = 1m.

(b) Find magnitude and direction of the electric field at x = 0 and x = 1m.

(c) Find magnitude and direction of the electric forces \mathbf{F}_{21} acting on charge q_1 and \mathbf{F}_{12} acting on charge q_2 .

Unit Exam I: Problem #1 (Fall '19)

Consider two point charges positioned on the *x*-axis as shown. Use $k = 9 \times 10^9 \text{Nm}^2 \text{C}^{-2}$.

(a) Find the electric potential at x = 0 and x = 1m.

(b) Find magnitude and direction of the electric field at x = 0 and x = 1m.

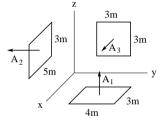
(c) Find magnitude and direction of the electric forces \mathbf{F}_{21} acting on charge q_1 and \mathbf{F}_{12} acting on charge q_2 .

$$q_1 = -8nC$$
 $q_2 = +4nC$
 $q_1 = -8nC$ $q_2 = +4nC$
 $q_2 = -4nC$ $r = -2$ $r = -1$ $r = -2$ $r = -2$

(a)
$$V_0 = k \frac{(-8nC)}{1m} + k \frac{(4nC)}{2m} = -54V, \qquad V_1 = k \frac{(-8nC)}{2m} + k \frac{(4nC)}{1m} = 0V.$$

(b)
$$\mathbf{E}_0 = -k \frac{|-8nC|}{(1m)^2} \hat{\mathbf{i}} - k \frac{|4nC|}{(2m)^2} \hat{\mathbf{i}} = -81N/C\hat{\mathbf{i}}, \qquad \mathbf{E}_1 = -k \frac{|-8nC|}{(2m)^2} \hat{\mathbf{i}} - k \frac{|4nC|}{(1m)^2} \hat{\mathbf{i}} = -54N/C\hat{\mathbf{i}}.$$

(c)
$$\mathbf{F}_{21} = k \frac{|(-8nC)(4nC)|}{(3m)^2} \hat{\mathbf{i}} = 32nN\hat{\mathbf{i}}, \qquad \mathbf{F}_{12} = -\mathbf{F}_{21} = -32nN\hat{\mathbf{i}}.$$

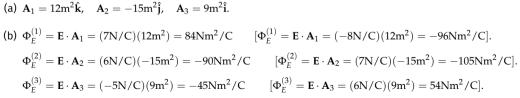

Unit Exam I: Problem #2 (Fall '19)

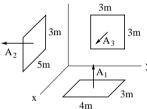
Consider plane, rectangular surfaces with area vectors A_1 (in positive *z*-direction), A_2 (in negative *y*-direction), and A_3 (in positive *x*-direction) as shown.

The region is filled with a uniform electric field, $\mathbf{E} = (-5\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 7\hat{\mathbf{k}})\mathsf{N/C}$ $[\mathbf{E} = (6\hat{\mathbf{i}} + 7\hat{\mathbf{j}} - 8\hat{\mathbf{k}})\mathsf{N/C}].$

(a) State the area vectors A_1 , A_2 , A_3 .

(b) Find the electric flux $\Phi_E^{(1)}$, $\Phi_E^{(2)}$, $\Phi_E^{(3)}$ through each surface.




Unit Exam I: Problem #2 (Fall '19)

Consider plane, rectangular surfaces with area vectors A_1 (in positive *z*-direction), A_2 (in negative *y*-direction), and A_3 (in positive *x*-direction) as shown.

The region is filled with a uniform electric field, $\mathbf{E} = (-5\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 7\hat{\mathbf{k}})\mathsf{N/C}$ [$\mathbf{E} = (6\hat{\mathbf{i}} + 7\hat{\mathbf{j}} - 8\hat{\mathbf{k}})\mathsf{N/C}$].

(a) State the area vectors A_1 , A_2 , A_3 . (b) Find the electric flux $\Phi_E^{(1)}$, $\Phi_E^{(2)}$, $\Phi_E^{(3)}$ through each surface.

Unit Exam I: Problem #3 (Fall '19)

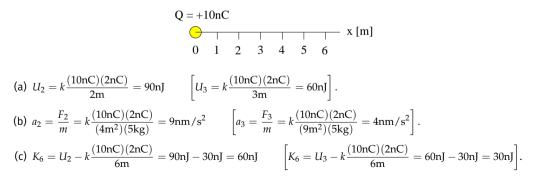
The point charge Q = 10 nC is fixed at x = 0. It generates an electric field and an electric potential everywhere. A charged particle (not shown) with mass m = 5kg and charge q = 2nC is released from rest at x = 2m [x = 3m]. Use $k = 9 \times 10^9$ Nm²C⁻².

(a) Find the potential energy U_2 [U_3] of the particle at x = 2m [x = 3m].

(b) Find the acceleration a_2 [a_3] of the particle at x = 2m [x = 3m].

(c) Find the kinetic energy K_6 of the particle when it has arrived at x = 6m.

Unit Exam I: Problem #3 (Fall '19)



The point charge Q = 10 nC is fixed at x = 0. It generates an electric field and an electric potential everywhere. A charged particle (not shown) with mass m = 5kg and charge q = 2nC is released from rest at x = 2m [x = 3m]. Use $k = 9 \times 10^9$ Nm²C⁻².

(a) Find the potential energy U_2 [U_3] of the particle at x = 2m [x = 3m].

(b) Find the acceleration a_2 [a_3] of the particle at x = 2m [x = 3m].

(c) Find the kinetic energy K_6 of the particle when it has arrived at x = 6m.

