## **Charged Conductor at Equilibrium (1)**

miĝini

- Consider a conductor with excess charge Q in isolation.
- The mobile charges (electrons) are rearranged spontaneously until we have  $\vec{E}_0 = 0$  everywhere inside the conductor.
- If  $\vec{E}_0 = 0$  inside the conductor, then Gauss's law implies that there can be no net flux through any Gaussian surface that is inside the conductor.
- Hence there can be no net charge in any region inside the conductor.
- Hence all excess charge must be at the surface, where it produces an electric field  $\vec{E}_0(\vec{r})$  on the outside only.



## **Charged Conductor at Equilibrium (2)**

mini

- Now place a point charge *q* near the charged conductor.
- The electric field produced by q causes a further rearrangement of mobile surface charges until we have again  $\vec{E} = 0$  in the interior.
- Locally, the electric field  $\vec{E}$  is perpendicular to the surface of the conductor, and its magnitude is proportional to the charge per unit area:  $E = \sigma/\epsilon_0$ .



## **Charged Conductor at Equilibrium (3)**



- Consider a conductor with a cavity and excess charge Q.
- Gauss's law implies that there is no net charge on the surface of the cavity.
- The external field is  $\vec{E}_0(\vec{r})$ . There is no field in the cavity.
- Now place a point charge q inside the cavity.
- Gauss's law implies that there is a charge -q on the surface of the cavity.
- Charge conservation implies that there is a charge Q + q on the outer surface of the conductor.
- The external field changes to  $\vec{E}(\vec{r})$ . There is a nonzero electric field field inside the cavity.

