

In a uniform magnetic field of strength B = 3.5mT [B = 5.3mT], a proton with specifications ($m = 1.67 \times 10^{-27}$ kg, $q = 1.60 \times 10^{-19}$ C) moves at speed v around a circle in the yz-plane as shown.

- (a) Show that the direction of the magnetic field must be $+\hat{\mathbf{i}}$
- (b) What is the speed of the proton?
- (c) How long does it take the proton to reach point A from its current position?

In a uniform magnetic field of strength B = 3.5mT [B = 5.3mT], a proton with specifications ($m = 1.67 \times 10^{-27}$ kg, $q = 1.60 \times 10^{-19}$ C) moves at speed v around a circle in the yz-plane as shown.

- (a) Show that the direction of the magnetic field must be $+\hat{\mathbf{i}}$
- (b) What is the speed of the proton?
- (c) How long does it take the proton to reach point A from its current position?

- (a) Find magnitude B_1 and direction (\odot, \otimes) of the magnetic field produced by current $I_1 = 1.5$ A at the center.
- (b) Find magnitude μ_4 and direction (\odot, \otimes) of the magnetic dipole moment produced by current $I_4 = 4.5$ A.
- (c) What must be the ratio I_2/I_1 such that the magnetic field at the center is zero?
- (d) What must be the ratio I_4/I_3 such that the magnetic dipole moment is zero?

- (a) Find magnitude B_1 and direction (\odot, \otimes) of the magnetic field produced by current $I_1 = 1.5$ A at the center.
- (b) Find magnitude μ_4 and direction (\odot, \otimes) of the magnetic dipole moment produced by current $I_4 = 4.5$ A.
- (c) What must be the ratio I_2/I_1 such that the magnetic field at the center is zero?
- (d) What must be the ratio I_4/I_3 such that the magnetic dipole moment is zero?

Solution:

(a)
$$B_1 = \frac{\mu_0(1.5\text{A})}{2(5\text{cm})} = 1.88 \times 10^{-5} \text{T} \otimes$$

(b) $\mu_4 = \pi (10\text{cm})^2 (4.5\text{A}) = 1.41 \times 10^{-1} \text{Am}^2$
(c) $B_1 = B_2 \Rightarrow \frac{I_2}{I_1} = \frac{r_2}{r_1} = 2.$
(d) $\mu_3 = \mu_4 \Rightarrow \frac{I_4}{I_3} = \frac{r_3^2}{r_4^2} = 0.25.$

- (a) Find magnitude B_2 and direction (\odot, \otimes) of the magnetic field produced by current $I_2 = 2.5$ A at the center.
- (b) Find magnitude μ_3 and direction (\odot, \otimes) of the magnetic dipole moment produced by current $I_3 = 3A$.
- (c) What must be the ratio I_2/I_1 such that the magnetic field at the center is zero?
- (d) What must be the ratio I_4/I_3 such that the magnetic dipole moment is zero?

- (a) Find magnitude B_2 and direction (\odot, \otimes) of the magnetic field produced by current $I_2 = 2.5$ A at the center.
- (b) Find magnitude μ_3 and direction (\odot, \otimes) of the magnetic dipole moment produced by current $I_3 = 3A$.

 \otimes

- (c) What must be the ratio I_2/I_1 such that the magnetic field at the center is zero?
- (d) What must be the ratio I_4/I_3 such that the magnetic dipole moment is zero?

Solution:

(a)
$$B_2 = \frac{\mu_0(2.5\text{A})}{2(10\text{cm})} = 1.57 \times 10^{-5} \text{T}$$
 \odot
(b) $\mu_3 = \pi (5\text{cm})^2 (3\text{A}) = 2.36 \times 10^{-2} \text{Am}^2$

(c)
$$B_1 = B_2 \Rightarrow \frac{I_2}{I_1} = \frac{r_2}{r_1} = 2.$$

(d) $\mu_3 = \mu_4 \Rightarrow \frac{I_4}{I_3} = \frac{r_3^2}{r_4^2} = 0.25$

A pair of fixed rails are connected by two moving rods. A uniform magnetic field *B* is present. The positions of the rods at time t = 0 are as shown. The (constant) velocities are $v_1 = 0.5$ m/s, $v_2 = 2.5$ m/s [$v_1 = 1.5$ m/s, $v_2 = 0.5$ m/s].

- (a) Find the magnetic flux Φ_0 at time t = 0 and Φ_1 at t = 2s (magnitude only).
- (b) Find the induced emf \mathcal{E}_0 at time t = 0 and \mathcal{E}_1 at t = 2s (magnitude only).
- (c) Find the direction (cw/ccw) of the induced current at t = 0.

A pair of fixed rails are connected by two moving rods. A uniform magnetic field *B* is present. The positions of the rods at time t = 0 are as shown. The (constant) velocities are $v_1 = 0.5$ m/s, $v_2 = 2.5$ m/s [$v_1 = 1.5$ m/s, $v_2 = 0.5$ m/s].

- (a) Find the magnetic flux Φ_0 at time t = 0 and Φ_1 at t = 2s (magnitude only).
- (b) Find the induced emf \mathcal{E}_0 at time t = 0 and \mathcal{E}_1 at t = 2s (magnitude only).
- (c) Find the direction (cw/ccw) of the induced current at t = 0.

Solution:

- (a) $\Phi_0 = (5m 0m)(3m)(0.8T) = 12Wb$, $\Phi_1 = (10m 1m)(3m)(0.8T) = 21.6Wb$ [$\Phi_0 = (5m - 0m)(3m)(0.8T) = 12Wb$, $\Phi_1 = (6m - 3m)(3m)(0.8T) = 7.2Wb$]
- (b) $|\mathcal{E}_0| = |\mathcal{E}_1| = (2.5 \text{m/s} 0.5 \text{m/s})(0.8 \text{T})(3\text{m}) = 4.8 \text{V}$ $[|\mathcal{E}_0| = |\mathcal{E}_1| = (1.5 \text{m/s} - 0.5 \text{m/s})(0.8 \text{T})(3\text{m}) = 2.4 \text{V}]$
- (c) ccw [cw]