
Unit Exam II: Problem #1 (Spring '18)

The circuit shown has reached equilibrium. The specifications are $\mathcal{E} = 12V$ [18V], $C_1 = C_2 = C_3 = 5nF$ [4nF]

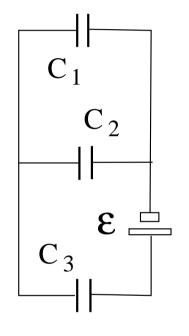
- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the charge Q_2 on capacitor C_2 .
- (c) Find the voltage V_3 across capacitor C_3 .
- (d) Find the total energy U stored in the capacitors.

Unit Exam II: Problem #1 (Spring '18)

The circuit shown has reached equilibrium. The specifications are $\mathcal{E} = 12V$ [18V], $C_1 = C_2 = C_3 = 5nF$ [4nF]

- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the charge Q_2 on capacitor C_2 .
- (c) Find the voltage V_3 across capacitor C_3 .
- (d) Find the total energy U stored in the capacitors.

Solution:


(a) $C_{12} = C_1 + C_2 = 10 \text{nF} [8 \text{nF}].$

$$C_{eq} = \left(\frac{1}{C_{12}} + \frac{1}{C_3}\right)^{-1} = \frac{10}{3} \mathrm{nF} \left[\frac{8}{3} \mathrm{nF}\right].$$

(b) $Q_3 = Q_{12} = \mathcal{E}C_{eq} = 40$ nC [48nC], $Q_1 = Q_2 = \frac{1}{2}Q_{12} = 20$ nC [24nC].

(c)
$$V_3 = \frac{Q_3}{C_3} = 8V [12V], \quad V_1 = V_2 = \frac{Q_1}{C_1} = \frac{Q_2}{C_2} = 4V [6V].$$

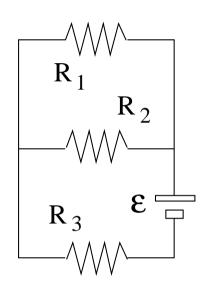
(d) $U = \frac{1}{2}C_{eq}\mathcal{E}^2 = 240 \text{nJ} [432 \text{nJ}].$



Unit Exam II: Problem #2 (Spring '18)

The circuit shown is in a steady state. The specifications are $\mathcal{E} = 12V$ [18V], $R_1 = R_2 = R_3 = 5\Omega$ [4 Ω].

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the currents I_1 through resistor R_1 .
- (c) Find the voltage V_3 across resistor R_3 .
- (d) Find the power P produced by the battery.


Unit Exam II: Problem #2 (Spring '18)

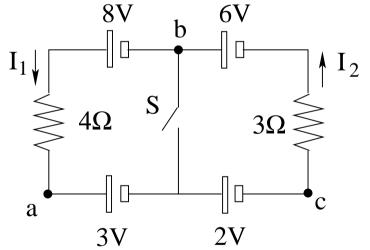
The circuit shown is in a steady state. The specifications are $\mathcal{E} = 12V$ [18V], $R_1 = R_2 = R_3 = 5\Omega$ [4 Ω].

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the currents I_1 through resistor R_1 .
- (c) Find the voltage V_3 across resistor R_3 .
- (d) Find the power *P* produced by the battery.

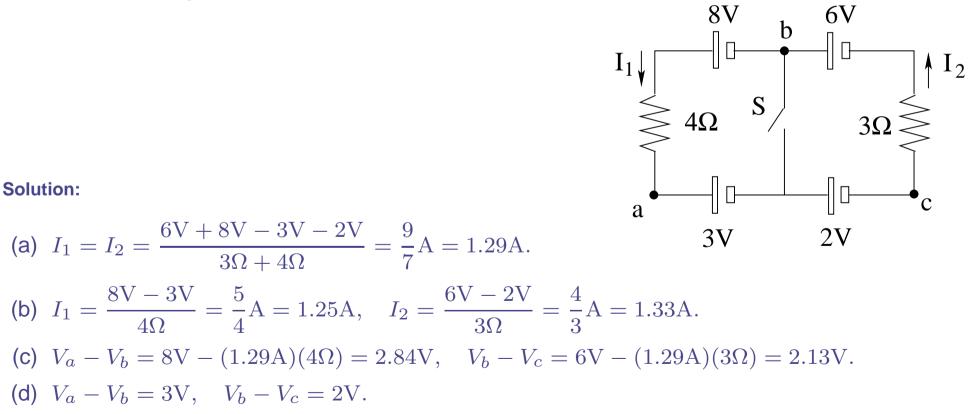
Solution:

(a)
$$R_{12} = \left(\frac{1}{R_1} + \frac{1}{R_3}\right)^{-1} = 2.5\Omega \ [2.0\Omega], \quad R_{eq} = R_{12} + R_3 = 7.5\Omega \ [6.0\Omega].$$

(b) $I_3 = I_{12} = \frac{\mathcal{E}}{R_{eq}} = 1.6A \ [3.0A], \quad I_1 = I_2 = \frac{1}{2}I_{12} = 0.8A \ [1.5A].$
(c) $V_3 = R_3I_3 = 8V \ [12V], \quad V_1 = V_2 = R_1I_1 = R_2I_2 = 4V \ [6V].$
(d) $P = \frac{\mathcal{E}^2}{R_{eq}} = R_{eq}I_3^2 = 19.2W \ [54.0W].$



This circuit is in a steady state with the switch S either open or closed.


- (a) Find the currents I_1 and I_2 when the switch is open.
- (b) Find the currents I_1 and I_2 when the switch is closed.
- (c) Find the voltages $V_a V_b$ and $V_b V_c$ when the switch is open.
- (d) Find the voltages $V_a V_b$ and $V_b V_c$ when the switch is closed.

This circuit is in a steady state with the switch S either open or closed.

- (a) Find the currents I_1 and I_2 when the switch is open.
- (b) Find the currents I_1 and I_2 when the switch is closed.
- (c) Find the voltages $V_a V_b$ and $V_b V_c$ when the switch is open.
- (d) Find the voltages $V_a V_b$ and $V_b V_c$ when the switch is closed.

