

This circuit is at equilibrium.

- Find the charge Q_7 on capacitor C_7 [Q_5 on C_5].
- Find the energy U_5 on capacitor C_5 [U_7 on C_7].
- Find the voltages V_2 , V_4 across capacitors C_2 , C_4 [V_3 , V_6 across C_3 , C_6].

This circuit is at equilibrium.

- Find the charge Q_7 on capacitor C_7 [Q_5 on C_5].
- Find the energy U_5 on capacitor C_5 [U_7 on C_7].
- Find the voltages V_2 , V_4 across capacitors C_2 , C_4 [V_3 , V_6 across C_3 , C_6].

Solution:

• $Q_7 = (24V)(7\mu F) = 168\mu C$ $[Q_5 = (24V)(5\mu F) = 120\mu C]$

- $U_5 = \frac{1}{2} (5\mu F)(24V)^2 = 1440\mu J \qquad \left[U_7 = \frac{1}{2} (7\mu F)(24V)^2 = 2016\mu J \right]$
- $V_2 + V_4 = 24V$, $V_2C_2 = V_4C_4 \Rightarrow V_2 = 16V$, $V_4 = 8V$ $[V_3 + V_6 = 24V$, $V_3C_3 = V_6C_6 \Rightarrow V_3 = 16V$, $V_6 = 8V]$

Unit Exam II: Problem #2 (Fall '17)

Consider the resistor circuit on the left [right].

Find the currents I_1 , I_2 [I_3 , I_4] and the potential difference $V_a - V_b$ [$V_c - V_d$]

- (a) when the switch S_w [S_y] is open,
- (b) when the switch S_w [S_y] is closed

Unit Exam II: Problem #2 (Fall '17)

Consider the resistor circuit on the left [right].

Find the currents I_1 , I_2 [I_3 , I_4] and the potential difference $V_a - V_b$ [$V_c - V_d$]

- (a) when the switch S_w [S_y] is open,
- (b) when the switch S_w [S_y] is closed

Solution:

(a)
$$I_1 = I_2 = \frac{3V + 6V}{5\Omega + 3\Omega} = 1.125A, \quad V_a - V_b = 9V.$$

 $\left[I_3 = I_4 = \frac{2V + 5V}{6\Omega + 4\Omega} = 0.7A, \quad V_c - V_d = 7V.\right]$
(b) $I_1 = \frac{3V}{5\Omega} = 0.6A, \quad I_2 = \frac{6V}{3\Omega} = 2A, \quad V_a - V_b = 9V.$
 $\left[I_3 = \frac{5V}{4\Omega} = 1.25A, \quad I_4 = \frac{2V}{6\Omega} = 0.333A, \quad V_c - V_d = 7V.\right]$

The switch S of this circuit has been open for a long time. The capacitor has capacitance C = 6pF [C = 4pF]. Each resistor has resistance $R = 6\Omega$ [$R = 4\Omega$].

- (a) Find the currents I_1, I_2, I_3 right after the switch has been closed.
- (b) Find the currents I_1, I_2, I_3 a long time later

The switch S of this circuit has been open for a long time. The capacitor has capacitance C = 6pF [C = 4pF]. Each resistor has resistance $R = 6\Omega$ [$R = 4\Omega$].

- (a) Find the currents I_1, I_2, I_3 right after the switch has been closed.
- (b) Find the currents I_1, I_2, I_3 a long time later

Solution:

(a) no voltage across capacitor: $R_{eq} = 9\Omega$ [$R_{eq} = 6\Omega$]

$$I_3 = I_1 + I_2 = \frac{36V}{9\Omega} = 4A, \quad I_1 = I_2 = 2A \quad \left[I_3 = I_1 + I_2 = \frac{36V}{6\Omega} = 6A, \quad I_1 = I_2 = 3A\right].$$

(b) no current through capacitor: $R_{eq} = 12\Omega$ [$R_{eq} = 8\Omega$]

$$I_1 = I_3 = \frac{36V}{12\Omega} = 3A, \quad I_2 = 0, \quad \left[I_1 = I_3 = \frac{36V}{8\Omega} = 4.5A, \quad I_2 = 0\right].$$