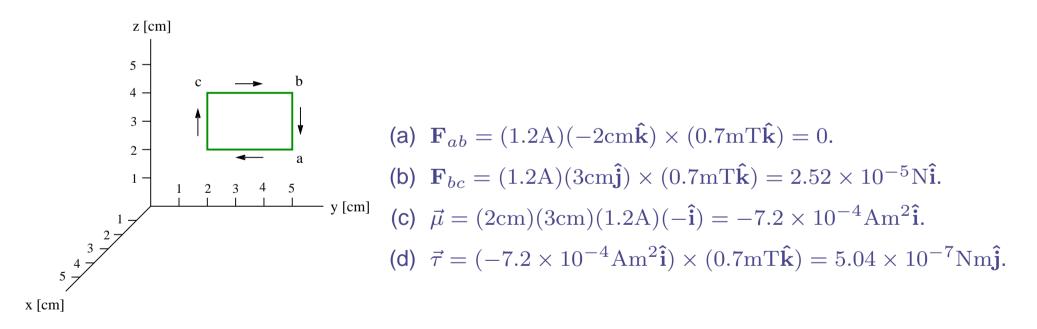
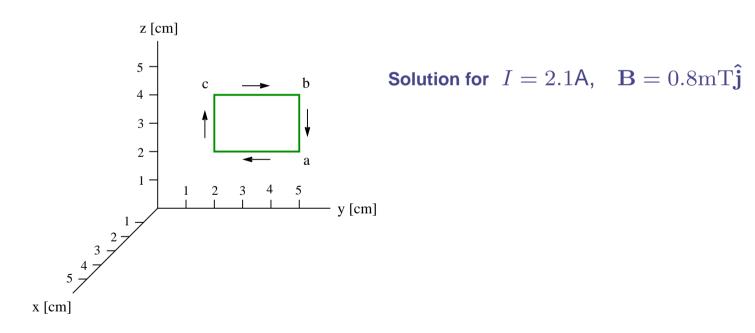


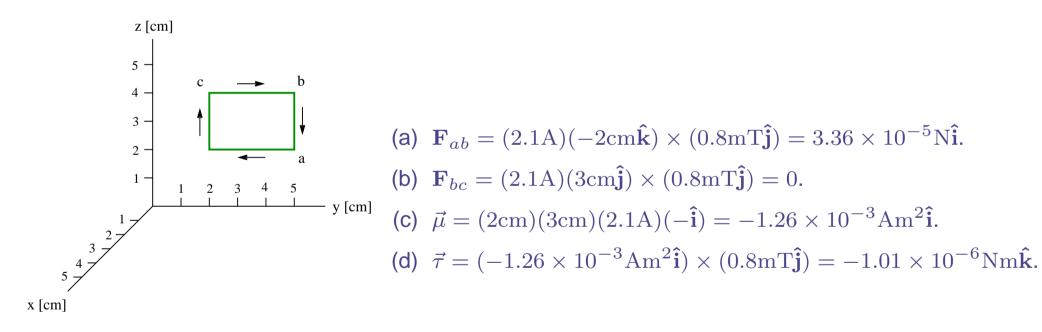
- (a) Find the force \mathbf{F}_{ab} (magnitude and direction) acting on side ab.
- (b) Find the force \mathbf{F}_{bc} (magnitude and direction) acting on side bc.
- (c) Find the magnetic moment $\vec{\mu}$ (magnitude and direction) of the current loop.
- (d) Find the torque $\vec{\tau}$ (magnitude and direction) acting on the frame.



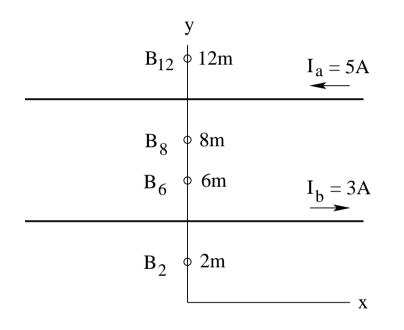
- (a) Find the force \mathbf{F}_{ab} (magnitude and direction) acting on side ab.
- (b) Find the force \mathbf{F}_{bc} (magnitude and direction) acting on side bc.
- (c) Find the magnetic moment $\vec{\mu}$ (magnitude and direction) of the current loop.
- (d) Find the torque $\vec{\tau}$ (magnitude and direction) acting on the frame.



- (a) Find the force \mathbf{F}_{ab} (magnitude and direction) acting on side ab.
- (b) Find the force \mathbf{F}_{bc} (magnitude and direction) acting on side bc.
- (c) Find the magnetic moment $\vec{\mu}$ (magnitude and direction) of the current loop.
- (d) Find the torque $\vec{\tau}$ (magnitude and direction) acting on the frame.

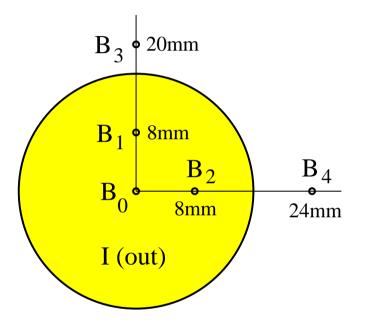


- (a) Find the force \mathbf{F}_{ab} (magnitude and direction) acting on side ab.
- (b) Find the force \mathbf{F}_{bc} (magnitude and direction) acting on side bc.
- (c) Find the magnetic moment $\vec{\mu}$ (magnitude and direction) of the current loop.
- (d) Find the torque $\vec{\tau}$ (magnitude and direction) acting on the frame.


- (a) Find the force \mathbf{F}_{ab} (magnitude and direction) acting on side ab.
- (b) Find the force \mathbf{F}_{bc} (magnitude and direction) acting on side bc.
- (c) Find the magnetic moment $\vec{\mu}$ (magnitude and direction) of the current loop.
- (d) Find the torque $\vec{\tau}$ (magnitude and direction) acting on the frame.

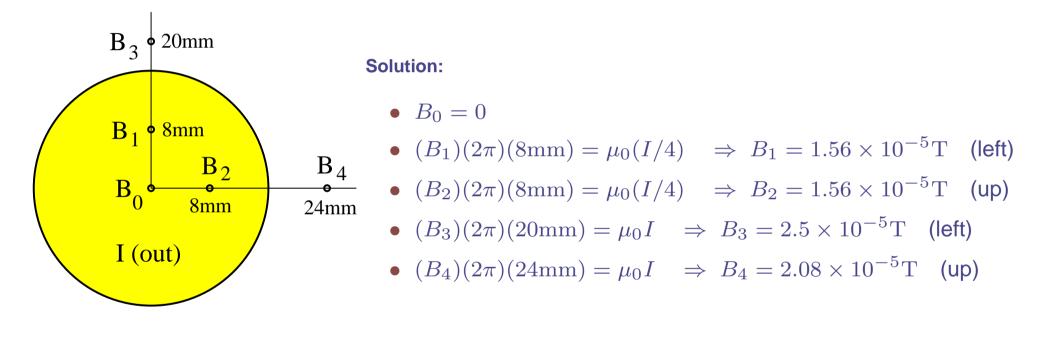
Unit Exam III: Problem #2 (Fall '16)

Two infinitely long, straight wires at positions y = 10m and y = 4m carry currents I_a and I_b , respectively. Find direction (in/out) and magnitude of the magnetic fields \mathbf{B}_{12} , \mathbf{B}_8 , \mathbf{B}_6 , and \mathbf{B}_2 at the points marked in the graph.

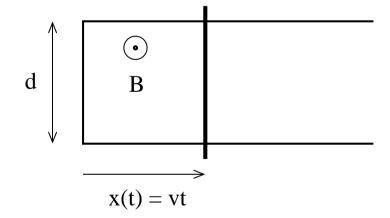


Two infinitely long, straight wires at positions y = 10m and y = 4m carry currents I_a and I_b , respectively. Find direction (in/out) and magnitude of the magnetic fields B_{12} , B_8 , B_6 , and B_2 at the points marked in the graph.

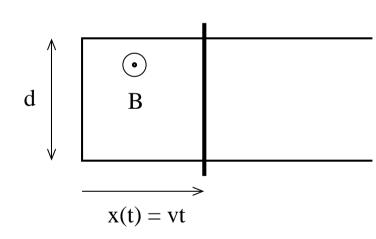
y	Solution:
$B_{12} \diamond 12m$ $I_a =$	• $B_{12} = \frac{\mu_0}{2\pi} \left(-\frac{5A}{2m} + \frac{3A}{8m} \right) = -4.25 \times 10^{-7} \text{T}$ (in).
$B_8 \circ 8m$ $B_6 \circ 6m$ $I_1 =$	• $B_8 = \frac{\mu_0}{2\pi} \left(\frac{5A}{2m} + \frac{3A}{4m} \right) = 6.50 \times 10^{-7} \text{T}$ (out).
	• $B_6 = \frac{\mu_0}{2\pi} \left(\frac{5A}{4m} + \frac{3A}{2m}\right) = 5.50 \times 10^{-7} \text{T}$ (out).
B ₂ ♦ 2m	- x • $B_2 = \frac{\mu_0}{2\pi} \left(\frac{5A}{8m} - \frac{3A}{2m} \right) = -1.75 \times 10^{-7} \text{T}$ (in).



A conducting wire of 16mm radius carries a current *I* that is uniformly distributed over its cross section and directed out of the plane. Find direction (left/right/up/down) and magnitude of the magnetic fields \mathbf{B}_0 , \mathbf{B}_1 , \mathbf{B}_2 , \mathbf{B}_3 , and \mathbf{B}_4 at the positions indicated if the current is I = 2.5A.



A conducting wire of 16mm radius carries a current *I* that is uniformly distributed over its cross section and directed out of the plane. Find direction (left/right/up/down) and magnitude of the magnetic fields \mathbf{B}_0 , \mathbf{B}_1 , \mathbf{B}_2 , \mathbf{B}_3 , and \mathbf{B}_4 at the positions indicated if the current is I = 2.5A.



A conducting frame of width d = 1.6m with a moving conducting rod is located in a uniform magnetic field B = 3T directed out of the plane. The rod moves at constant velocity v = 0.4m/s toward the right. Its instantaneous position is x(t) = vt. Find the magnetic flux Φ_B through the frame and the induced emf \mathcal{E} around the frame at times $t_2 = 2$ s, $t_3 = 3$ s, $t_4 = 4$ s, and $t_5 = 5$ s. Write magnitudes only (in SI units), no directions. Is the induced current directed clockwise or counterclockwise?

A conducting frame of width d = 1.6m with a moving conducting rod is located in a uniform magnetic field B = 3T directed out of the plane. The rod moves at constant velocity v = 0.4m/s toward the right. Its instantaneous position is x(t) = vt. Find the magnetic flux Φ_B through the frame and the induced emf \mathcal{E} around the frame at times $t_2 = 2$ s, $t_3 = 3$ s, $t_4 = 4$ s, and $t_5 = 5$ s. Write magnitudes only (in SI units), no directions. Is the induced current directed clockwise or counterclockwise?

Solution:

- $\Phi_B^{(2)} = (1.6\text{m})(0.8\text{m})(3\text{T}) = 3.84\text{Wb},$ $\mathcal{E}^{(2)} = (0.4\text{m/s})(3\text{T})(1.6\text{m}) = 1.92\text{V}.$
- $\Phi_B^{(3)} = (1.6\text{m})(1.2\text{m})(3\text{T}) = 5.76\text{Wb},$ $\mathcal{E}^{(3)} = (0.4\text{m/s})(3\text{T})(1.6\text{m}) = 1.92\text{V}.$
- $\Phi_B^{(4)} = (1.6\text{m})(1.6\text{m})(3\text{T}) = 7.68\text{Wb},$ $\mathcal{E}^{(4)} = (0.4\text{m/s})(3\text{T})(1.6\text{m}) = 1.92\text{V}.$
- $\Phi_B^{(5)} = (1.6\text{m})(2.0\text{m})(3\text{T}) = 9.60\text{Wb},$ $\mathcal{E}^{(5)} = (0.4\text{m/s})(3\text{T})(1.6\text{m}) = 1.92\text{V}.$
- Clockwise current.