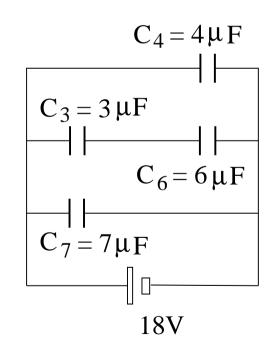

Unit Exam II: Problem #1 (Fall '16)



The capacitors (initially discharged) have been connected to the battery. The circuit is now at equilibrium. Find ...

- (a) the voltage V_2 across capacitor C_2 ,
- (b) the energy U_5 on capacitor C_5 ,
- (c) the charge Q_3 on capacitor C_3 ,
- (d) the equivalent capacitance C_{eq} .

- (a) the voltage V_4 across capacitor C_4 ,
- (b) the energy U_7 on capacitor C_7 ,
- (c) the charge Q_6 on capacitor C_6 ,
- (d) the equivalent capacitance C_{eq} .

Unit Exam II: Problem #1 (Fall '16)

The capacitors (initially discharged) have been connected to the battery. The circuit is now at equilibrium. Find ...

- (a) the voltage V_2 across capacitor C_2 ,
- (b) the energy U_5 on capacitor C_5 ,
- (c) the charge Q_3 on capacitor C_3 ,
- (d) the equivalent capacitance C_{eq} .

- (a) the voltage V_4 across capacitor C_4 ,
- (b) the energy U_7 on capacitor C_7 ,
- (c) the charge Q_6 on capacitor C_6 ,
- (d) the equivalent capacitance C_{eq} .

Solution:

(a) $V_2 = 12V$.

(b)
$$U_5 = \frac{1}{2} (5\mu F) (12V)^2 = 360\mu J.$$

- (c) $C_{36} = 2\mu F$ $\Rightarrow Q_3 = Q_{36} = (12V)(2\mu F) = 24\mu C.$
- (d) $C_{eq} = C_5 + C_{36} + C_2 = 9\mu F.$

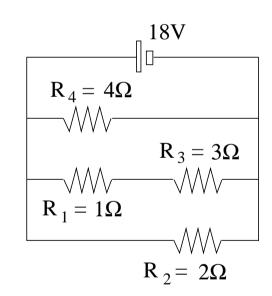
(a) $V_4 = 18$ V.

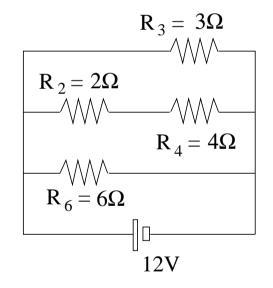
(b)
$$U_7 = \frac{1}{2} (7\mu F) (18V)^2 = 1134 \mu J.$$

(c)
$$C_{36} = 2\mu F$$

 $\Rightarrow Q_6 = Q_{36} = (18V)(2\mu F) = 36\mu C.$

(d)
$$C_{eq} = C_4 + C_{36} + C_7 = 13 \mu F.$$




This resistor circuit is in a state of steady currents. Find ...

(a) the voltage V_2 across resistor R_2 , (b) the power P_4 dissipated in resistor R_4 , (c) the current I_3 flowing through resistor R_3 (d) the equivalent resistance R_{eq} .

(a) the voltage V_3 across resistor R_3 ,

- (b) the power P_6 dissipated in resistor R_6 ,
- (c) the current I_4 flowing through resistor R_4 ,
- (d) the equivalent resistance R_{eq} .

This resistor circuit is in a state of steady currents. Find ...

- (a) the voltage V_2 across resistor R_2 , (b) the power P_4 dissipated in resistor R_4 , (c) the current I_3 flowing through resistor R_3 (d) the equivalent resistance R_{eq} .
- (a) the voltage V_3 across resistor R_3 ,
- (b) the power P_6 dissipated in resistor R_6 ,
- (c) the current I_4 flowing through resistor R_4 ,
- (d) the equivalent resistance R_{eq} .

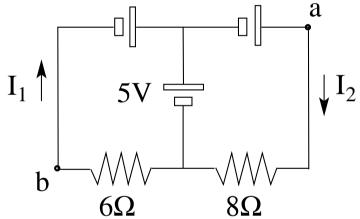
Solution:

(a) $V_2 = 18V.$ (b) $P_4 = \frac{18V^2}{4\Omega} = 81W.$ (c) $I_3 = \frac{18V}{3\Omega + 1\Omega} = 4.5A.$ (d) $R_{eq} = \left(\frac{1}{4\Omega} + \frac{1}{1\Omega + 3\Omega} + \frac{1}{2\Omega}\right)^{-1} = 1\Omega.$ (e) $V_3 = 12V$ (f) $P_6 = \frac{12V^2}{6\Omega} = 24W.$ (g) $P_6 = \frac{12V}{6\Omega} = 24W.$ (h) $P_6 = \frac{12V}{6\Omega} = 24W.$ (h) $P_6 = \frac{12V}{6\Omega} = 24W.$ (h) $R_{eq} = \frac{12V}{2\Omega + 4\Omega} = 2A.$ (h) $R_{eq} = \left(\frac{1}{4\Omega} + \frac{1}{1\Omega + 3\Omega} + \frac{1}{2\Omega}\right)^{-1} = 10.$ (h) $R_{eq} = \left(\frac{1}{3\Omega} + \frac{1}{2\Omega + 4\Omega} + \frac{1}{6\Omega}\right)^{-1} = 1.5\Omega$

Unit Exam II: Problem #3 (Fall '16)

This two-loop resistor circuit is in a state of steady currents. Find ...

- (a) the current I_1 ,
- (b) the current I_2 ,


 I_1

b

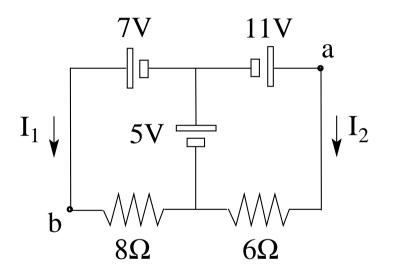
(c) the potential difference $V_a - V_b$.

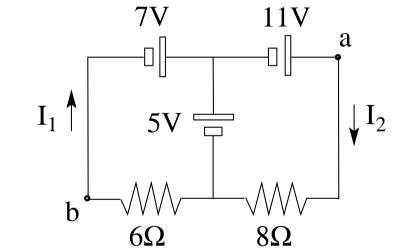
8Ω

6Ω

11V

Unit Exam II: Problem #3 (Fall '16)


This two-loop resistor circuit is in a state of steady currents. Find ...


- (a) the current I_1 ,
- (b) the current I_2 ,
- (c) the potential difference $V_a V_b$.

Solution:

(a) $I_1 = \frac{5V + 7V}{8\Omega} = +1.5A.$ (b) $I_2 = \frac{5V + 11V}{6\Omega} = +2.67A.$ (c) $V_a - V_b = -7V + 11V = +4V.$

(a)
$$I_1 = \frac{7V - 5V}{6\Omega} = +0.333A.$$

(b) $I_2 = \frac{5V + 11V}{8\Omega} = +2A.$
(c) $V_a - V_b = 7V + 11V = +18V.$

