

Consider two point charges positioned as shown.

- (a) Find the magnitude of the electric field at point C[D].
- (b) Draw the field direction at point C[D] by an arrow.
- (c) Find the electric potential at point A[B].

5/10/2016 [tsl535 - 1/3]

Unit Exam I: Problem #1 (Fall '16)

Consider two point charges positioned as shown. (a) Find the magnitude of the electric field at point C [D].

- (b) Draw the field direction at point C[D] by an arrow.
- (c) Find the electric potential at point A[B].

Solution:

• $E_C = k \frac{9 \text{nC}}{(4\text{m})^2} - k \frac{7 \text{nC}}{(6\text{m})^2} = 5.06 \text{V/m} - 1.75 \text{V/m} = 3.31 \text{V/m}.$ $[E_D = k \frac{7 \text{nC}}{(3\text{m})^2} - k \frac{9 \text{nC}}{(7\text{m})^2} = 7.00 \text{V/m} - 1.65 \text{V/m} = 5.35 \text{V/m}].$

• Down/left along diagonal [Up/right along diagonal].

•
$$V_A = k \frac{9nC}{6m} + k \frac{7nC}{8m} = 13.50V + 7.88V = 21.4V.$$

 $[V_B = k \frac{9nC}{8m} + k \frac{7nC}{6m} = 10.1V + 10.5V = 20.6V].$

Consider a conducting sphere and a conducting spherical shell as shown in cross section. The charges on the two surfaces of the shell are

 $Q_2 = -5nC$ and $Q_3 = +2nC$ [$Q_2 = +4nC$ and $Q_3 = -3nC$].

(a) Find the charge Q_1 on the surface of the conducting sphere.

- (b) Find magnitude and direction of the electric field at point A.
- (c) Find magnitude and direction of the electric field at point B.

Consider a conducting sphere and a conducting spherical shell as shown in cross section. The charges on the two surfaces of the shell are

 $Q_2 = -5nC$ and $Q_3 = +2nC$ [$Q_2 = +4nC$ and $Q_3 = -3nC$].

(a) Find the charge Q_1 on the surface of the conducting sphere.

(b) Find magnitude and direction of the electric field at point A.

(c) Find magnitude and direction of the electric field at point B.

Solution:

(a) Gauss' law implies that

$$Q_1 = -Q_2 = +5nC [Q_1 = -Q_2 = -4nC].$$

(b) $E_A = k \frac{5nC}{(4cm)^2} = 28.1 \times 10^3 N/C$ (right)
 $[E_A = k \frac{4nC}{(4cm)^2} = 22.5 \times 10^3 N/C$ (left)].
(c) $E_B = k \frac{2nC}{(12cm)^2} = 1.25 \times 10^3 N/C$ (right)
 $[E_B = k \frac{3nC}{(12cm)^2} = 1.88 \times 10^3 N/C$ (left)]

Consider a region of uniform electric field E. A particle with charge q and mass m is projected at time t = 0 with initial velocity v_0 . The specifications are m = 3g, q = 2mC, $v_0 = 4$ m/s, E = 5N/C. [m = 2g, q = 3mC, $v_0 = 5$ m/s, E = 4N/C]. Ignore gravity. (a) Find the components F_x and F_y of the electric force acting on the particle at time t = 1.5s.

(b) Find the components v_x and v_y of the velocity at time t = 1.5s.

(c) Find the kinetic energy at time t = 1.5s.

Consider a region of uniform electric field E. A particle with charge q and mass m is projected at time t = 0 with initial velocity v_0 . The specifications are m = 3g, q = 2mC, $v_0 = 4$ m/s, E = 5N/C. [m = 2g, q = 3mC, $v_0 = 5$ m/s, E = 4N/C]. Ignore gravity. (a) Find the components F_x and F_y of the electric force acting on the particle at time t = 1.5s. (b) Find the components v_x and v_y of the velocity at time t = 1.5s. (c) Find the kinetic energy at time t = 1.5s.

(a)
$$F_x = 0$$
, $F_y = qE = 10$ mN
 $[F_x = 0, F_y = qE = 12$ mN].

(b)
$$v_x = v_0 = 4$$
m/s, $v_y = \frac{F_y}{m}t = 5$ m/s
 $[v_x = v_0 = 5$ m/s, $v_y = \frac{F_y}{m}t = 9$ m/s].

(c)
$$K = \frac{1}{2} (3 \times 10^{-3} \text{kg}) [(4\text{m/s})^2 + (5\text{m/s})^2] = 61.5 \text{mJ}$$

 $[K = \frac{1}{2} (2 \times 10^{-3} \text{kg}) [(5\text{m/s})^2 + (9\text{m/s})^2] = 106 \text{mJ}].$

