

Conducting squares 1 and 2, each of side 2cm, are positioned as shown. A current I = 3A is flowing around each square in the direction shown. A uniform magnetic field $\vec{B} = 5\text{mT}\hat{k}$ exists in the entire region.

- (a) Find the forces \vec{F}_{ab} and \vec{F}_{cd} acting on sides ab and cd, respectively.
- (b) Find the magnetic moments $\vec{\mu}_1$ and $\vec{\mu}_2$ of squares 1 and 2, respectively.

(c) Find the torques $\vec{\tau}_1$ and $\vec{\tau}_2$ acting on squares 1 and 2, respectively.

Remember that vectors have components or magnitude and direction.

Conducting squares 1 and 2, each of side 2cm, are positioned as shown. A current I = 3A is flowing around each square in the direction shown. A uniform magnetic field $\vec{B} = 5\text{mT}\hat{k}$ exists in the entire region.

- (a) Find the forces \vec{F}_{ab} and \vec{F}_{cd} acting on sides ab and cd, respectively.
- (b) Find the magnetic moments $\vec{\mu}_1$ and $\vec{\mu}_2$ of squares 1 and 2, respectively.

(c) Find the torques $\vec{\tau}_1$ and $\vec{\tau}_2$ acting on squares 1 and 2, respectively. Remember that vectors have components or magnitude and direction.

Solution:

(a)
$$\vec{F}_{ab} = (3A)(2cm\hat{j}) \times (5mT\hat{k}) = 3 \times 10^{-4}N\hat{i}.$$

 $\vec{F}_{cd} = (3A)(-2cm\hat{i}) \times (5mT\hat{k}) = 3 \times 10^{-4}N\hat{j}.$

(b) $\vec{\mu}_1 = (2\text{cm})^2 (3\text{A}) \mathbf{\hat{i}} = 1.2 \times 10^{-3} \text{Am}^2 \mathbf{\hat{i}}.$ $\vec{\mu}_2 = (2\text{cm})^2 (3\text{A}) \mathbf{\hat{k}} = 1.2 \times 10^{-3} \text{Am}^2 \mathbf{\hat{k}}.$

(d)
$$\vec{\tau}_1 = (1.2 \times 10^{-3} \text{Am}^2 \mathbf{\hat{i}}) \times (5 \text{mT} \mathbf{\hat{k}}) = -6 \times 10^{-6} \text{Nm} \mathbf{\hat{j}}$$

 $\vec{\tau}_2 = (1.2 \times 10^{-3} \text{Am}^2 \mathbf{\hat{k}}) \times (5 \text{mT} \mathbf{\hat{k}}) = 0.$

Unit Exam III: Problem #2 (Spring '16)

(a) Consider two long, straight currents I = 3mA in the directions shown. Find the magnitude of the magnetic field at point a. Find the directions ($\leftarrow, \rightarrow, \uparrow, \downarrow$) of the magnetic field at points b and c. (b) Consider a circular current I = 3mA in the direction shown. Find the magnitude of the magnetic field at point d. Find the directions (\otimes, \odot) of the magnetic field at points e and f.

Unit Exam III: Problem #2 (Spring '16)

(a) Consider two long, straight currents I = 3mA in the directions shown. Find the magnitude of the magnetic field at point a. Find the directions ($\leftarrow, \rightarrow, \uparrow, \downarrow$) of the magnetic field at points b and c. (b) Consider a circular current I = 3mA in the direction shown. Find the magnitude of the magnetic field at point d. Find the directions (\otimes, \odot) of the magnetic field at points e and f.

Solution:

(a)
$$B_a = 2 \frac{\mu_0(3\text{mA})}{2\pi(7\text{cm})} = 1.71 \times 10^{-8} \text{T}$$
 $B_b \uparrow$, $B_c \uparrow$.
(b) $B_d = \frac{\mu_0(3\text{mA})}{2(9\text{cm})} = 2.09 \times 10^{-8} \text{T}$, $B_e \odot$, $B_f \otimes$.

A wire shaped into a rectangular loop as shown is placed in the yz-plane. A uniform time-dependent magnetic field $\mathbf{B} = B_x(t)\hat{\mathbf{i}}$ is present. The dependence of B_x on time is shown graphically.

- (a) Find magnitude $|\Phi_B^{(2)}|$ of the magnetic flux through the loop at time t = 2s.
- (b) Find magnitude $|\Phi_B^{(5)}|$ of the magnetic flux through the loop at time t = 5s.
- (c) Find magnitude $|\mathcal{E}^{(2)}|$ of the induced EMF at time t = 2s.
- (d) Find magnitude $|\mathcal{E}^{(5)}|$ of the induced EMF at time t = 5s.

(e) Find the direction (cw/ccw) and magnitude I of the induced current at time t = 2s if the wire has resistance 1Ω per meter of length.

x [m]

A wire shaped into a rectangular loop as shown is placed in the yz-plane. A uniform time-dependent magnetic field $\mathbf{B} = B_x(t)\hat{\mathbf{i}}$ is present. The dependence of B_x on time is shown graphically.

- (a) Find magnitude $|\Phi_B^{(2)}|$ of the magnetic flux through the loop at time t = 2s.
- (b) Find magnitude $|\Phi_B^{(5)}|$ of the magnetic flux through the loop at time t = 5s.
- (c) Find magnitude $|\mathcal{E}^{(2)}|$ of the induced EMF at time t = 2s.
- (d) Find magnitude $|\mathcal{E}^{(5)}|$ of the induced EMF at time t = 5s.

(e) Find the direction (cw/ccw) and magnitude I of the induced current at time t = 2s if the wire has resistance 1Ω per meter of length.

z [m]

Solution:

