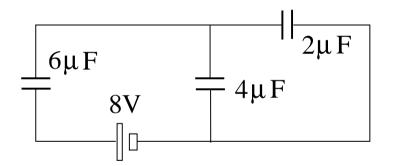
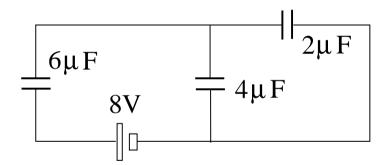

- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the total energy U stored in the three capacitors.
- (c) Find the charge Q_6 on the capacitor on the left.
- (d) Find the the voltages V_2 and V_4 across the two capacitor on the right.

- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the total energy U stored in the three capacitors.
- (c) Find the charge Q_6 on the capacitor on the left.
- (d) Find the the voltages V_2 and V_4 across the two capacitor on the right.

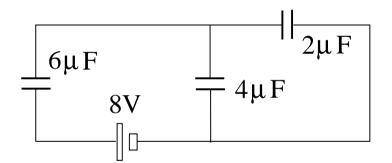

(a)
$$C_{eq} = \left(\frac{1}{2\mu F + 4\mu F} + \frac{1}{6\mu F}\right)^{-1} = 3\mu F.$$

- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the total energy U stored in the three capacitors.
- (c) Find the charge Q_6 on the capacitor on the left.
- (d) Find the the voltages V_2 and V_4 across the two capacitor on the right.


(a)
$$C_{eq} = \left(\frac{1}{2\mu F + 4\mu F} + \frac{1}{6\mu F}\right)^{-1} = 3\mu F.$$

(b) $U = \frac{1}{2}(3\mu F)(8V)^2 = 96\mu J.$

- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the total energy U stored in the three capacitors.
- (c) Find the charge Q_6 on the capacitor on the left.
- (d) Find the the voltages V_2 and V_4 across the two capacitor on the right.

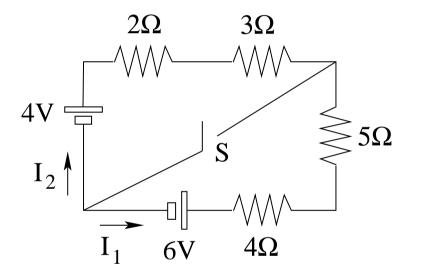

(a)
$$C_{eq} = \left(\frac{1}{2\mu F + 4\mu F} + \frac{1}{6\mu F}\right)^{-1} = 3\mu F.$$

(b) $U = \frac{1}{2}(3\mu F)(8V)^2 = 96\mu J.$
(c) $Q_6 = (8V)(3\mu F) = 24\mu C.$

- (a) Find the equivalent capacitance C_{eq} .
- (b) Find the total energy U stored in the three capacitors.
- (c) Find the charge Q_6 on the capacitor on the left.
- (d) Find the the voltages V_2 and V_4 across the two capacitor on the right.

(a)
$$C_{eq} = \left(\frac{1}{2\mu F + 4\mu F} + \frac{1}{6\mu F}\right)^{-1} = 3\mu F.$$

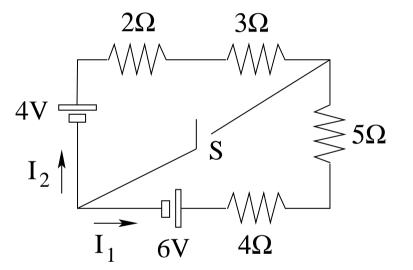
(b) $U = \frac{1}{2}(3\mu F)(8V)^2 = 96\mu J.$
(c) $Q_6 = (8V)(3\mu F) = 24\mu C.$
(d) $V_2 = V_4 = \frac{1}{2}(8V) = 4V.$



Unit Exam II: Problem #2 (Spring '16)

Consider the electrical circuit shown.

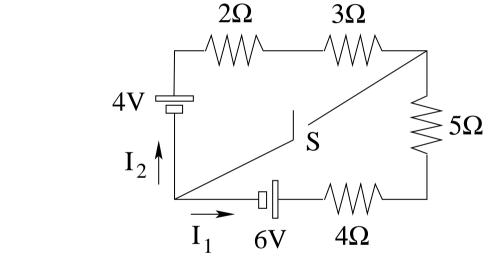
- (a) Find the current I_1 when the switch S is open.
- (b) Find the currents I_1 and I_2 when the switch S is closed.



Unit Exam II: Problem #2 (Spring '16)

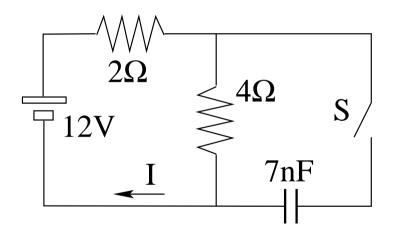
Consider the electrical circuit shown.

- (a) Find the current I_1 when the switch S is open.
- (b) Find the currents I_1 and I_2 when the switch S is closed.



(a)
$$I_1 = \frac{6V - 4V}{4\Omega + 5\Omega + 3\Omega + 2\Omega} = 0.143A.$$

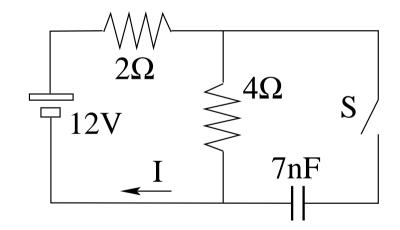
Unit Exam II: Problem #2 (Spring '16)


Consider the electrical circuit shown.

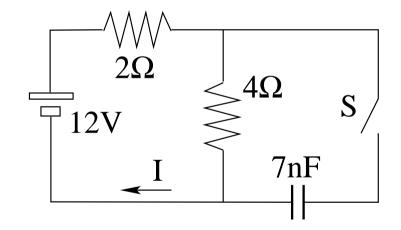
- (a) Find the current I_1 when the switch S is open.
- (b) Find the currents I_1 and I_2 when the switch S is closed.

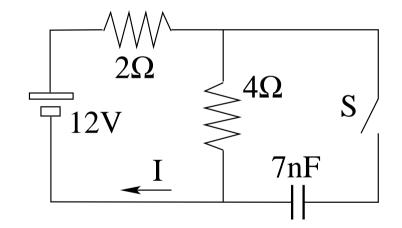
(a)
$$I_1 = \frac{6V - 4V}{4\Omega + 5\Omega + 3\Omega + 2\Omega} = 0.143A.$$

(b) $I_1 = \frac{6V}{4\Omega + 5\Omega} = 0.667A, \quad I_2 = \frac{4V}{3\Omega + 2\Omega} = 0.8A$


- (a) Find the current *I* while the switch is still open.
- (b) Find the current *I* right after the switch has been closed.
- (c) Find the current *I* a long time later.
- (d) Find the charge Q on the capacitor also a long time later.

- (a) Find the current I while the switch is still open.
- (b) Find the current *I* right after the switch has been closed.
- (c) Find the current *I* a long time later.
- (d) Find the charge Q on the capacitor also a long time later.


(a)
$$I = \frac{12V}{2\Omega + 4\Omega} = 2A.$$


- (a) Find the current I while the switch is still open.
- (b) Find the current *I* right after the switch has been closed.
- (c) Find the current I a long time later.
- (d) Find the charge Q on the capacitor also a long time later.

(a)
$$I = \frac{12V}{2\Omega + 4\Omega} = 2A.$$

(b) $I = \frac{12V}{2\Omega} = 6A.$

- (a) Find the current I while the switch is still open.
- (b) Find the current *I* right after the switch has been closed.
- (c) Find the current I a long time later.
- (d) Find the charge Q on the capacitor also a long time later.

(a)
$$I = \frac{12V}{2\Omega + 4\Omega} = 2A.$$

(b) $I = \frac{12V}{2\Omega} = 6A.$
(c) $I = \frac{12V}{2\Omega + 4\Omega} = 2A.$

- (a) Find the current I while the switch is still open.
- (b) Find the current *I* right after the switch has been closed.
- (c) Find the current I a long time later.
- (d) Find the charge Q on the capacitor also a long time later.

(a)
$$I = \frac{12V}{2\Omega + 4\Omega} = 2A.$$

(b) $I = \frac{12V}{2\Omega} = 6A.$
(c) $I = \frac{12V}{2\Omega + 4\Omega} = 2A.$

$$2\Omega + 4\Omega$$

(d)
$$Q = (8V)(7nF) = 56nC.$$

