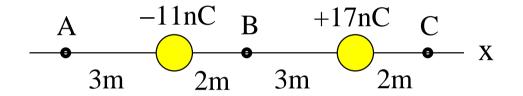
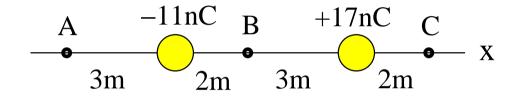


- (1a) Find magnitude and direction of the electric field at point C.
- (1b) Find the electric potential at point B.
- (2a) Find magnitude and direction of the electric field at point B.
- (2b) Find the electric potential at point A.

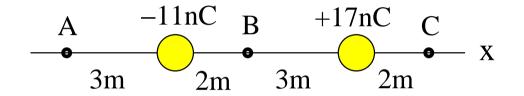

- (1a) Find magnitude and direction of the electric field at point C.
- (1b) Find the electric potential at point B.
- (2a) Find magnitude and direction of the electric field at point B.
- (2b) Find the electric potential at point A.

(1a)
$$E_x = -k \frac{|-11nC|}{(7m)^2} + k \frac{|17nC|}{(2m)^2} = -2.02N/C + 38.25N/C = +36.23N/C.$$


- (1a) Find magnitude and direction of the electric field at point C.
- (1b) Find the electric potential at point B.
- (2a) Find magnitude and direction of the electric field at point B.
- (2b) Find the electric potential at point A.

(1a)
$$E_x = -k \frac{|-11nC|}{(7m)^2} + k \frac{|17nC|}{(2m)^2} = -2.02N/C + 38.25N/C = +36.23N/C$$

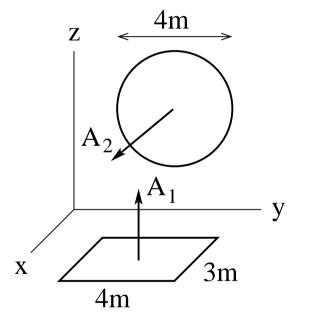
(1b) $V = k \frac{(-11nC)}{2m} + k \frac{(17nC)}{3m} = -49.5V + 51.0V = 1.5V.$


- (1a) Find magnitude and direction of the electric field at point C.
- (1b) Find the electric potential at point B.
- (2a) Find magnitude and direction of the electric field at point B.
- (2b) Find the electric potential at point A.

(1a)
$$E_x = -k \frac{|-11nC|}{(7m)^2} + k \frac{|17nC|}{(2m)^2} = -2.02N/C + 38.25N/C = +36.23N/C.$$

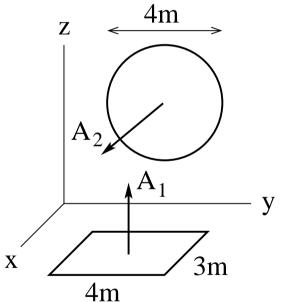
(1b) $V = k \frac{(-11nC)}{2m} + k \frac{(17nC)}{3m} = -49.5V + 51.0V = 1.5V.$
(2a) $E_x = -k \frac{|-11nC|}{(2m)^2} - k \frac{|17nC|}{(3m)^2} = -24.75N/C - 17.00N/C = -41.75N/C.$

- (1a) Find magnitude and direction of the electric field at point C.
- (1b) Find the electric potential at point B.
- (2a) Find magnitude and direction of the electric field at point B.
- (2b) Find the electric potential at point A.


(1a)
$$E_x = -k \frac{|-11nC|}{(7m)^2} + k \frac{|17nC|}{(2m)^2} = -2.02N/C + 38.25N/C = +36.23N/C.$$

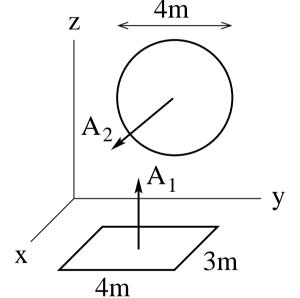
(1b) $V = k \frac{(-11nC)}{2m} + k \frac{(17nC)}{3m} = -49.5V + 51.0V = 1.5V.$
(2a) $E_x = -k \frac{|-11nC|}{(2m)^2} - k \frac{|17nC|}{(3m)^2} = -24.75N/C - 17.00N/C = -41.75N/C.$
(2b) $V = k \frac{(-11nC)}{3m} + k \frac{17nC}{8m} = -33.0V + 19.1V = -13.9V.$

Consider two plane surfaces (of rectangular and a circular shape) with area vectors $\vec{A_1}$ pointing in positive *z*-direction) and $\vec{A_2}$ pointing in positive *x*-direction. The region is filled with a uniform electric field

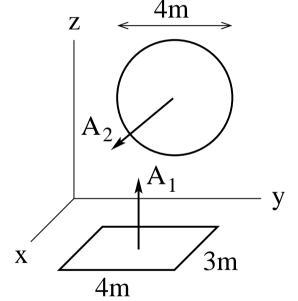

- (1) $\vec{E} = (4\hat{i} + 5\hat{j} 7\hat{k})$ N/C,
- (2) $\vec{E} = (-6\hat{i} + 4\hat{j} + 5\hat{k})$ N/C.

(a) Find the electric flux $\Phi_E^{(1)}$ through area A_1 .

(b) Find the electric flux $\Phi_E^{(2)}$ through area A_2 .

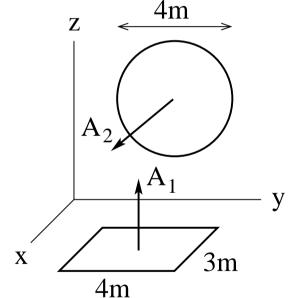


(1a)
$$\Phi_E^{(1)} = \vec{E} \cdot \vec{A_1} = (-7 \text{N/C})(12.0 \text{m}^2) = -84.0 \text{Nm}^2/\text{C}.$$



(1a)
$$\Phi_E^{(1)} = \vec{E} \cdot \vec{A}_1 = (-7\text{N/C})(12.0\text{m}^2) = -84.0\text{Nm}^2/\text{C}.$$

(1b) $\Phi_E^{(2)} = \vec{E} \cdot \vec{A}_2 = (4\text{N/C})(12.6\text{m}^2) = 50.4\text{Nm}^2/\text{C}.$

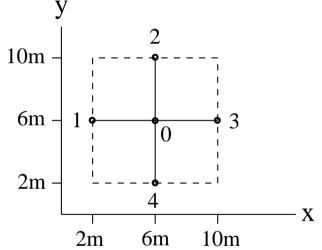


(1a)
$$\Phi_E^{(1)} = \vec{E} \cdot \vec{A}_1 = (-7\text{N/C})(12.0\text{m}^2) = -84.0\text{Nm}^2/\text{C}.$$

(1b) $\Phi_E^{(2)} = \vec{E} \cdot \vec{A}_2 = (4\text{N/C})(12.6\text{m}^2) = 50.4\text{Nm}^2/\text{C}.$
(2a) $\Phi_E^{(1)} = \vec{E} \cdot \vec{A}_1 = (5\text{N/C})(12.0\text{m}^2) = 60.0\text{Nm}^2/\text{C}.$

(1a)
$$\Phi_E^{(1)} = \vec{E} \cdot \vec{A}_1 = (-7\text{N/C})(12.0\text{m}^2) = -84.0\text{Nm}^2/\text{C}.$$

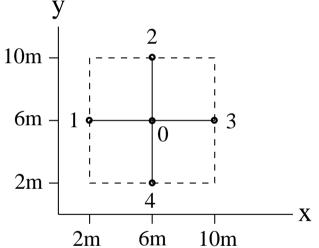
(1b) $\Phi_E^{(2)} = \vec{E} \cdot \vec{A}_2 = (4\text{N/C})(12.6\text{m}^2) = 50.4\text{Nm}^2/\text{C}.$
(2a) $\Phi_E^{(1)} = \vec{E} \cdot \vec{A}_1 = (5\text{N/C})(12.0\text{m}^2) = 60.0\text{Nm}^2/\text{C}.$
(2b) $\Phi_E^{(2)} = \vec{E} \cdot \vec{A}_2 = (-6\text{N/C})(12.6\text{m}^2) = -75.6\text{Nm}^2/\text{C}.$



(1) $\mathbf{E} = 1.2 \mathrm{V/m}\,\hat{\mathbf{j}}$, (2) $\mathbf{E} = 0.6 \mathrm{V/m}\,\hat{\mathbf{i}}$. Ignore gravity.

(a) If the electric potential vanishes at point 0, what are the electric potentials at points 1, 2, 3, 4? (b) If a proton ($m = 1.67 \times 10^{-27}$ kg, $q = 1.60 \times 10^{-19}$ C) is released from rest at point 0, toward which point will it start moving?

(c) What will be the kinetic energy of the proton when it gets there?

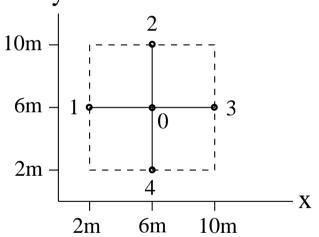


(1) $\mathbf{E} = 1.2 \mathrm{V/m}\,\hat{\mathbf{j}}$, (2) $\mathbf{E} = 0.6 \mathrm{V/m}\,\hat{\mathbf{i}}$. Ignore gravity.

(a) If the electric potential vanishes at point 0, what are the electric potentials at points 1, 2, 3, 4? (b) If a proton ($m = 1.67 \times 10^{-27}$ kg, $q = 1.60 \times 10^{-19}$ C) is released from rest at point 0, toward which point will it start moving?

(c) What will be the kinetic energy of the proton when it gets there?

(1a)
$$V_1 = 0$$
, $V_2 = -4.8$ V, $V_3 = 0$, $V_4 = +4.8$ V.



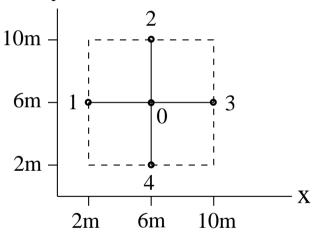
(1) $\mathbf{E} = 1.2 \mathrm{V/m}\,\hat{\mathbf{j}}$, (2) $\mathbf{E} = 0.6 \mathrm{V/m}\,\hat{\mathbf{i}}$. Ignore gravity.

(a) If the electric potential vanishes at point 0, what are the electric potentials at points 1, 2, 3, 4? (b) If a proton ($m = 1.67 \times 10^{-27}$ kg, $q = 1.60 \times 10^{-19}$ C) is released from rest at point 0, toward which point will it start moving?

(c) What will be the kinetic energy of the proton when it gets there?

- (1a) $V_1 = 0$, $V_2 = -4.8$ V, $V_3 = 0$, $V_4 = +4.8$ V.
- (1b) $\mathbf{F} = q\mathbf{E}$ (toward point 2).

(1) $\mathbf{E} = 1.2 \text{V/m} \hat{\mathbf{j}}$, (2) $\mathbf{E} = 0.6 \text{V/m} \hat{\mathbf{i}}$. Ignore gravity.


(a) If the electric potential vanishes at point 0, what are the electric potentials at points 1, 2, 3, 4? (b) If a proton ($m = 1.67 \times 10^{-27}$ kg, $q = 1.60 \times 10^{-19}$ C) is released from rest at point 0, toward which point will it start moving? У

(c) What will be the kinetic energy of the proton when it gets there?

(1a)
$$V_1 = 0$$
, $V_2 = -4.8$ V, $V_3 = 0$, $V_4 = +4.8$ V.

(1b)
$$\mathbf{F} = q\mathbf{E}$$
 (toward point 2).

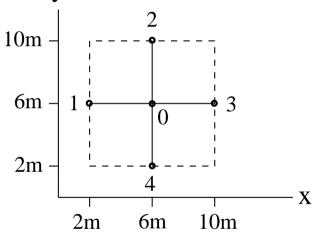
(1c)
$$\Delta V = (V_2 - V_0) = -4.8 \text{V},$$

 $\Delta U = q \Delta V = -7.68 \times 10^{-19} \text{J},$
 $K = -\Delta U = +7.68 \times 10^{-19} \text{J}.$

(1) $\mathbf{E} = 1.2 \mathrm{V/m}\,\hat{\mathbf{j}}$, (2) $\mathbf{E} = 0.6 \mathrm{V/m}\,\hat{\mathbf{i}}$. Ignore gravity.

(a) If the electric potential vanishes at point 0, what are the electric potentials at points 1, 2, 3, 4? (b) If a proton ($m = 1.67 \times 10^{-27}$ kg, $q = 1.60 \times 10^{-19}$ C) is released from rest at point 0, toward which point will it start moving?

(c) What will be the kinetic energy of the proton when it gets there?


Solution:

(1a)
$$V_1 = 0$$
, $V_2 = -4.8$ V, $V_3 = 0$, $V_4 = +4.8$ V.

(1b)
$$\mathbf{F} = q\mathbf{E}$$
 (toward point 2)

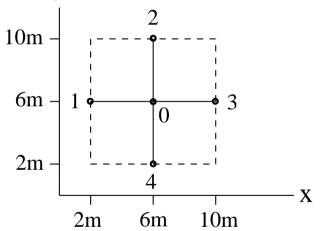
(1c)
$$\Delta V = (V_2 - V_0) = -4.8 \text{V},$$

 $\Delta U = q \Delta V = -7.68 \times 10^{-19} \text{J},$
 $K = -\Delta U = +7.68 \times 10^{-19} \text{J}.$

(2a) $V_1 = 2.4$ V, $V_2 = 0$, $V_3 = -2.4$ V, $V_4 = 0$.

(1) $\mathbf{E} = 1.2 \text{V/m} \hat{\mathbf{j}}$, (2) $\mathbf{E} = 0.6 \text{V/m} \hat{\mathbf{i}}$. Ignore gravity.

(a) If the electric potential vanishes at point 0, what are the electric potentials at points 1, 2, 3, 4? (b) If a proton ($m = 1.67 \times 10^{-27}$ kg, $q = 1.60 \times 10^{-19}$ C) is released from rest at point 0, toward which point will it start moving? У


(c) What will be the kinetic energy of the proton when it gets there?

(1a)
$$V_1 = 0$$
, $V_2 = -4.8$ V, $V_3 = 0$, $V_4 = +4.8$ V.

(1b)
$$\mathbf{F} = q\mathbf{E}$$
 (toward point 2)

(1c)
$$\Delta V = (V_2 - V_0) = -4.8 \text{V},$$

 $\Delta U = q \Delta V = -7.68 \times 10^{-19} \text{J},$
 $K = -\Delta U = +7.68 \times 10^{-19} \text{J}.$

(2a)
$$V_1 = 2.4$$
V, $V_2 = 0$, $V_3 = -2.4$ V, $V_4 = 0$.
(2b) $\mathbf{F} = q\mathbf{E}$ (toward point 3).

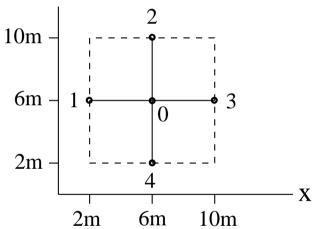
(1) $\mathbf{E} = 1.2 V/m \,\hat{\mathbf{j}}$, (2) $\mathbf{E} = 0.6 V/m \,\hat{\mathbf{i}}$. Ignore gravity.

(a) If the electric potential vanishes at point 0, what are the electric potentials at points 1, 2, 3, 4? (b) If a proton ($m = 1.67 \times 10^{-27}$ kg, $q = 1.60 \times 10^{-19}$ C) is released from rest at point 0, toward which point will it start moving? У

(c) What will be the kinetic energy of the proton when it gets there?

Solution:

(1a)
$$V_1 = 0$$
, $V_2 = -4.8$ V, $V_3 = 0$, $V_4 = +4.8$ V.


(1b)
$$\mathbf{F} = q\mathbf{E}$$
 (toward point 2)

(1c)
$$\Delta V = (V_2 - V_0) = -4.8 \text{V},$$

 $\Delta U = q \Delta V = -7.68 \times 10^{-19} \text{J},$
 $K = -\Delta U = +7.68 \times 10^{-19} \text{J}.$

(2a)
$$V_1 = 2.4$$
V, $V_2 = 0$, $V_3 = -2.4$ V, $V_4 = 0$.

(2b) $\mathbf{F} = q\mathbf{E}$ (toward point 3).

(2c)
$$\Delta V = (V_3 - V_0) = -2.4 \text{V},$$

 $\Delta U = q \Delta V = -3.84 \times 10^{-19} \text{J},$
 $K = -\Delta U = +3.84 \times 10^{-19} \text{J}.$

