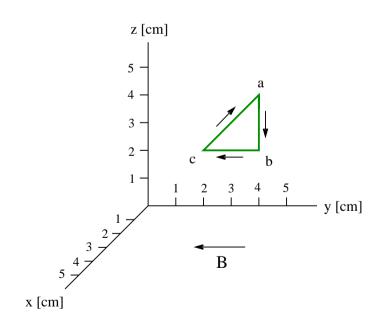
migni

A clockwise current I = 2.1A is flowing around the conducting triangular frame shown in a region of uniform magnetic field $\vec{B} = -3$ mTĵ.

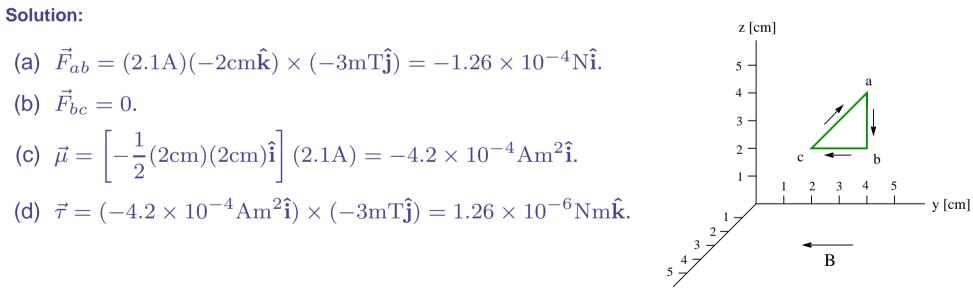

(a) Find the force \vec{F}_{ab} acting on side ab of the triangle.

(b) Find the force \vec{F}_{bc} acting on side bc of the triangle.

(c) Find the magnetic moment $\vec{\mu}$ of the current loop.

(d) Find the torque $\vec{\tau}$ acting on the current loop.

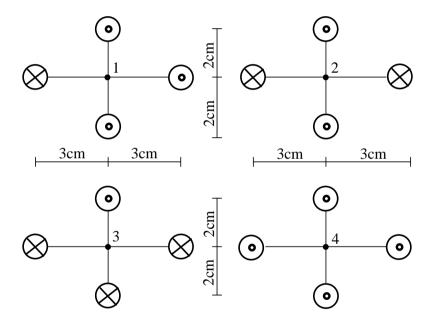
Remember that vectors have components or magnitude and direction.



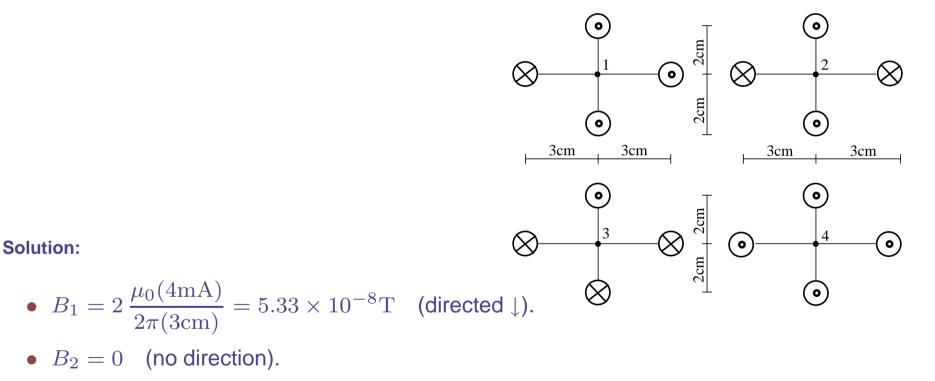
hini

A clockwise current I = 2.1A is flowing around the conducting triangular frame shown in a region of uniform magnetic field $\vec{B} = -3$ mT_j.

- (a) Find the force \vec{F}_{ab} acting on side ab of the triangle.
- (b) Find the force \vec{F}_{bc} acting on side bc of the triangle.
- (c) Find the magnetic moment $\vec{\mu}$ of the current loop.
- (d) Find the torque $\vec{\tau}$ acting on the current loop.


Remember that vectors have components or magnitude and direction.

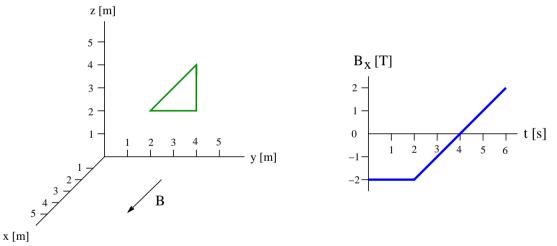
Unit Exam III: Problem #2 (Spring '15)


Consider four long, straight currents in four different configurations. All currents are I = 4mA in the directions shown ($\otimes =$ in, $\odot =$ out). Find the magnitude (in SI units) and the direction ($\leftarrow, \rightarrow, \uparrow, \downarrow$) of the magnetic fields $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4$ generated at the points $1, \ldots, 4$, respectively.

Unit Exam III: Problem #2 (Spring '15)

Consider four long, straight currents in four different configurations. All currents are I = 4mA in the directions shown ($\otimes =$ in, $\odot =$ out). Find the magnitude (in SI units) and the direction ($\leftarrow, \rightarrow, \uparrow, \downarrow$) of the magnetic fields $\mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4$ generated at the points $1, \ldots, 4$, respectively.

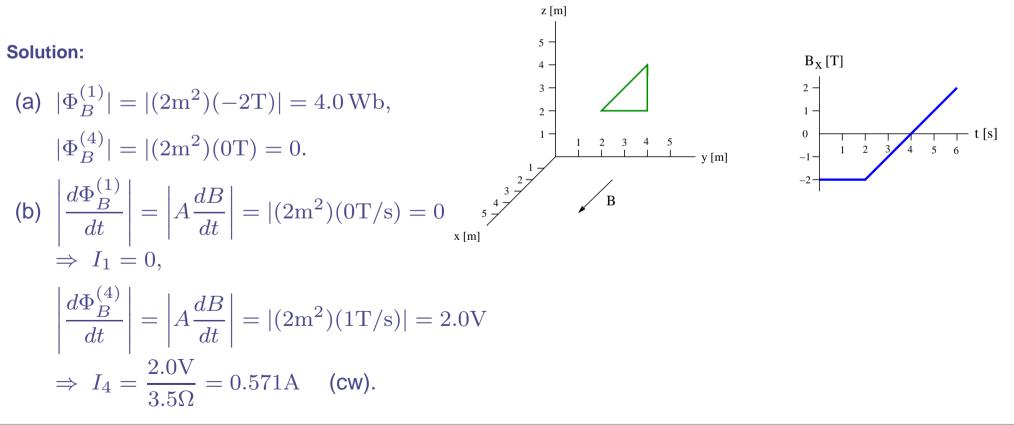
•
$$B_3 = 2 \frac{\mu_0(4\text{mA})}{2\pi(2\text{cm})} = 8.00 \times 10^{-8} \text{T} \text{ (directed} \rightarrow).$$


• $B_4 = 0$ (no direction).

A wire shaped into a triangle has resistance $R = 3.5\Omega$ and is placed in the *yz*-plane as shown. A uniform time-dependent magnetic field $\mathbf{B} = B_x(t)\hat{\mathbf{i}}$ is present. The dependence of B_x on time is shown graphically.

(a) Find magnitude $|\Phi_B^{(1)}|$ and $|\Phi_B^{(4)}|$ of the magnetic flux through the triangle at times t = 1s and t = 4s, respectively.

(b) Find magnitude I_1, I_4 and direction (cw/ccw) of the induced current at times t = 1s and t = 4s, respectively.



A wire shaped into a triangle has resistance $R = 3.5\Omega$ and is placed in the *yz*-plane as shown. A uniform time-dependent magnetic field $\mathbf{B} = B_x(t)\hat{\mathbf{i}}$ is present. The dependence of B_x on time is shown graphically.

(a) Find magnitude $|\Phi_B^{(1)}|$ and $|\Phi_B^{(4)}|$ of the magnetic flux through the triangle at times t = 1s and t = 4s, respectively.

(b) Find magnitude I_1, I_4 and direction (cw/ccw) of the induced current at times t = 1s and t = 4s, respectively.

