

Both capacitor circuits, charged up by batteries as shown, are now at equilibrium. Each of the six capacitors has a 2pF capacitance.

(a) Find the equivalent capacitance of the circuit on the left.

(b) Find the voltages V_1 , V_2 , V_3 across capacitors C_1 , C_2 , C_3 , respectively.

(c) Find the equivalent capacitance of the circuit on the right.

(d) Find the charges Q_4 , Q_5 , Q_6 on capacitors C_4 , C_5 , C_6 , respectively.

Both capacitor circuits, charged up by batteries as shown, are now at equilibrium. Each of the six capacitors has a 2pF capacitance.

(a) Find the equivalent capacitance of the circuit on the left.

(b) Find the voltages V_1 , V_2 , V_3 across capacitors C_1 , C_2 , C_3 , respectively.

(c) Find the equivalent capacitance of the circuit on the right.

(d) Find the charges Q_4 , Q_5 , Q_6 on capacitors C_4 , C_5 , C_6 , respectively.

Unit Exam II: Problem #2 (Fall '14)

Consider the resistor circuit shown with $R_1 = 5\Omega$, $R_2 = 1\Omega$, and $R_3 = 3\Omega$.

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the currents I_1 , I_2 , I_3 through resistors R_1 , R_2 , R_3 , respectively.
- (c) Find the voltages V_1 , V_2 , V_3 across resistors R_1 , R_2 , R_3 , respectively.

Unit Exam II: Problem #2 (Fall '14)

Consider the resistor circuit shown with $R_1 = 5\Omega$, $R_2 = 1\Omega$, and $R_3 = 3\Omega$.

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the currents I_1 , I_2 , I_3 through resistors R_1 , R_2 , R_3 , respectively.
- (c) Find the voltages V_1 , V_2 , V_3 across resistors R_1 , R_2 , R_3 , respectively.

Solution:

(a)
$$R_{eq} = \left(\frac{1}{1\Omega + 3\Omega} + \frac{1}{5\Omega}\right)^{-1} = \frac{20}{9}\Omega = 2.22\Omega.$$

(b) $I_1 = \frac{12V}{5\Omega} = 2.4A, \quad I_2 = I_3 = \frac{12V}{1\Omega + 3\Omega} = 3A.$
(c) $V_1 = R_1I_1 = 12V, \quad V_2 = R_2I_2 = 3V, \quad V_3 = R_3I_3 = 9V.$

Unit Exam II: Problem #3 (Fall '14)

Consider the two-loop circuit shown.

- (a) Find the current I_1 .
- (b) Find the current I_2 .
- (c) Find the potential difference $V_a V_b$.

Unit Exam II: Problem #3 (Fall '14)

Consider the two-loop circuit shown.

- (a) Find the current I_1 .
- (b) Find the current I_2 .
- (c) Find the potential difference $V_a V_b$.

Solution:

(a)
$$I_1 = \frac{6V - 4V}{5\Omega} = 0.4A.$$

(b) $I_2 = \frac{6V + 2V}{3\Omega} = 2.67A.$
(c) $V_a - V_b = 6V + 2V = 8V.$