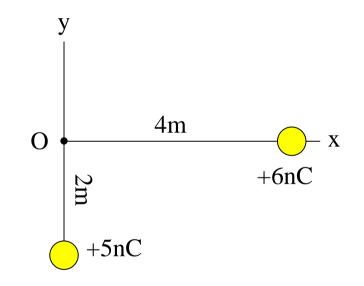

Unit Exam I: Problem #1 (Fall '14)

Two point charges are placed in the xy-plane as shown.

- (a) Find the components E_x and E_y of the electric field at point O.
- (b) Draw an arrow indicating the direction of \vec{E} at point O.
- (c) Find the electric potential V at point O.
- (d) Find the magnitude F of the electric force between the two charges.

Unit Exam I: Problem #1 (Fall '14)

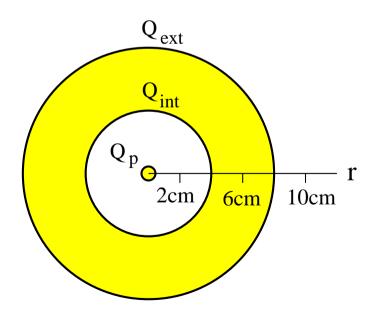
Two point charges are placed in the xy-plane as shown.


- (a) Find the components E_x and E_y of the electric field at point O.
- (b) Draw an arrow indicating the direction of \vec{E} at point O.
- (c) Find the electric potential V at point O.
- (d) Find the magnitude F of the electric force between the two charges.

Solution:

(a)
$$E_x = -k \frac{|6nC|}{(4m)^2} = -3.38$$
 N/C
 $E_y = +k \frac{|5nC|}{(2m)^2} = 11.25$ N/C.

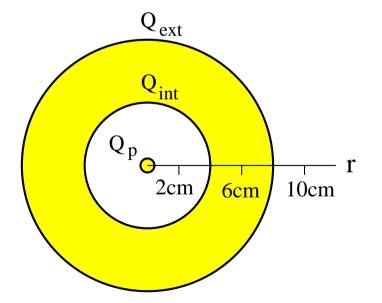
(b) Up and left.


(c)
$$V = k \frac{6nC}{4m} + k \frac{5nC}{2m} = 13.5V + 22.5V = 36V.$$

(d) $F = k \frac{|6nC||5nC|}{20m^2} = 13.5nN.$

The conducting spherical shell shown in cross section has a 4cm inner radius and an 8cm outer radius. A point charge Q_p is placed at the center. The charges on the inner and outer surfaces of the shell are $Q_{int} = 5nC$ and $Q_{ext} = 7nC$, respectively.

- (a) Find the charge $Q_{\rm p}$.
- (b) Find the magnitude of the electric field E at radius r = 10 cm.
- (c) Find the surface charge density σ_{int} on the inner surface of the shell.
- (d) Find the electric flux Φ_E through a Gaussian sphere of radius r = 6 cm.



The conducting spherical shell shown in cross section has a 4cm inner radius and an 8cm outer radius. A point charge Q_p is placed at the center. The charges on the inner and outer surfaces of the shell are $Q_{int} = 5nC$ and $Q_{ext} = 7nC$, respectively.

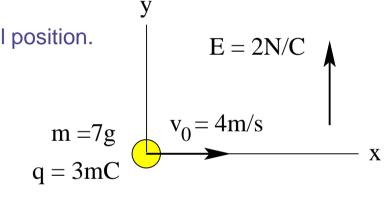
- (a) Find the charge $Q_{\rm p}$.
- (b) Find the magnitude of the electric field E at radius r = 10 cm.
- (c) Find the surface charge density σ_{int} on the inner surface of the shell.
- (d) Find the electric flux Φ_E through a Gaussian sphere of radius r = 6 cm.

Solution:

(a)
$$Q_{\rm p} = -Q_{\rm int} = -5 {\rm nC}.$$

(b) $E[4\pi(10{\rm cm})^2] = \frac{Q_{\rm p} + Q_{\rm int} + Q_{\rm ext}}{\epsilon_0} = \frac{Q_{\rm ext}}{\epsilon_0}$
 $\Rightarrow E = 6300 {\rm N/C}.$
(c) $\sigma_{\rm int} = \frac{Q_{\rm int}}{4\pi(4{\rm cm})^2} = 2.49 \times 10^{-7} {\rm C/m}^2.$
(d) $\Phi_E = 0$ inside conducting material.

Unit Exam I: Problem #3 (Fall '14)


- (a) Find the components a_x and a_y of the acceleration at time t = 0.
- (b) Find the components v_x and v_y of the velocity at time t = 2s.
- (c) Find the kinetic energy at time t = 2s.
- (d) Sketch the path of the particle as it moves from the initial position.

Unit Exam I: Problem #3 (Fall '14)

- (a) Find the components a_x and a_y of the acceleration at time t = 0.
- (b) Find the components v_x and v_y of the velocity at time t = 2s.
- (c) Find the kinetic energy at time t = 2s.
- (d) Sketch the path of the particle as it moves from the initial position.

Solution:

(a)
$$a_x = 0$$
, $a_y = \frac{q}{m}E = \frac{3 \times 10^{-3} \text{C}}{7 \times 10^{-3} \text{kg}} (2\text{N/C}) = 0.857 \text{m/s}^2$.
(b) $v_x = v_0 = 4\text{m/s}$, $v_y = a_y t = (0.857 \text{m/s}^2)(2\text{s}) = 1.71 \text{m/s}$.
(c) $E = \frac{1}{2} (7 \times 10^{-3} \text{kg}) [(4\text{m/s})^2 + (1.71 \text{m/s})^2] = 6.62 \times 10^{-2} \text{J}$.

(d) Upright parabolic path.

