

Both capacitor circuits, charged up by batteries as shown, are now at equilibrium. The charge on capacitor $C_1 = 6pF$ [8pF] is $Q_1 = 18pC$ [16pF] and charge on capacitor $C_4 = 8pF$ [4pf] is $Q_4 = 16pC$ [12pF].

- (a) Find the voltage V_2 across capacitor $C_2 = 4$ pF.
- (b) Find the emf \mathcal{E}_A supplied by the battery.
- (c) Find the charge Q_3 on capacitor $C_3 = 3$ pF.
- (d) Find the emf \mathcal{E}_B supplied by the battery.

Both capacitor circuits, charged up by batteries as shown, are now at equilibrium. The charge on capacitor $C_1 = 6pF$ [8pF] is $Q_1 = 18pC$ [16pF] and charge on capacitor $C_4 = 8pF$ [4pf] is $Q_4 = 16pC$ [12pF].

- (a) Find the voltage V_2 across capacitor $C_2 = 4$ pF.
- (b) Find the emf \mathcal{E}_A supplied by the battery.
- (c) Find the charge Q_3 on capacitor $C_3 = 3$ pF.

(d) Find the emf \mathcal{E}_B supplied by the battery.

Solution:

- (a) $Q_2 = Q_1 = 18 \text{pC}$, [16 pC], $V_2 = \frac{Q_2}{C_2} = 4.5 \text{V}$ [4V].
- (b) $\mathcal{E}_A = V_1 + V_2 = 3V + 4.5V = 7.5V$ [2V + 4V = 6V].
- (c) $V_3 = V_4 = \frac{Q_4}{C_4} = 2V$ [3V], $Q_3 = V_3C_3 = 6pC$ [9pC]. (d) $\mathcal{E}_B = V_3 = V_4 = 2V$ [3V].

Unit Exam II: Problem #2 (Spring '14)

Consider the resistor circuit shown with $R_1 = 2\Omega$ [3 Ω], $R_2 = 3\Omega$ [2 Ω], and $R_3 = 1\Omega$.

- (a) Find the current I_2 through resistor R_2 .
- (b) Find the voltage V_3 across resitor R_3 .
- (c) Find the power P_1 dissipated in resistor R_1 .
- (d) Find the equivalent resistance R_{eq} .

Unit Exam II: Problem #2 (Spring '14)

Consider the resistor circuit shown with $R_1 = 2\Omega$ [3 Ω], $R_2 = 3\Omega$ [2 Ω], and $R_3 = 1\Omega$.

- (a) Find the current I_2 through resistor R_2 .
- (b) Find the voltage V_3 across resitor R_3 .
- (c) Find the power P_1 dissipated in resistor R_1 .
- (d) Find the equivalent resistance R_{eq} .

Solution:

(a)
$$I_2 = \frac{12V}{3\Omega + 1\Omega} = 3A$$
 $\left[\frac{12V}{2\Omega + 1\Omega} = 4A\right].$
(b) $V_3 = (3A)(1\Omega) = 3V$ $[(4A)(1\Omega) = 4V].$
(c) $P_1 = \frac{(12V)^2}{2\Omega} = 72W$ $\left[\frac{(12V)^2}{3\Omega} = 48W\right].$
(d) $R_{eq} = \left(\frac{1}{2\Omega} + \frac{1}{3\Omega + 1\Omega}\right)^{-1} = \frac{4}{3}\Omega$ $\left[\left(\frac{1}{3\Omega} + \frac{1}{2\Omega + 1\Omega}\right)^{-1} = \frac{3}{2}\Omega\right].$

Unit Exam II: Problem #3 (Spring '14)

Consider the electric circuit shown. Find the currents I_1 , I_2 , I_3 , I_4 when ...

- (a) only switch S_A is closed,
- (b) only switch S_B is closed,
- (c) switches S_A and S_B are closed.

(a) only switch S_C is closed, (b) only switch S_B is closed,

(c) switches S_B and S_C are closed.

Unit Exam II: Problem #3 (Spring '14)

Consider the electric circuit shown. Find the currents I_1 , I_2 , I_3 , I_4 when ...

- (a) only switch S_A is closed,
- (b) only switch S_B is closed,
- (c) switches S_A and S_B are closed.

(a) only switch S_C is closed, (b) only switch S_B is closed, (c) switches S_C and S_C are closed

(c) switches S_B and S_C are closed.

Solution:

(a) $I_1 = 0.6A, I_2 = -0.6A, I_3 = 0, I_4 = 0.$ (a) $I_1 = 0, I_2 = 0, I_3 = -0.4A, I_4 = 0.4A.$ (b) $I_1 = 0, I_2 = 0.2A, I_3 = -0.2A, I_4 = 0.$ (b) $I_1 = 0, I_2 = 0.2A, I_3 = -0.2A, I_4 = 0.$ (c) $I_1 = 0.6A, I_2 = -0.4A, I_4 = 0.$ (c) $I_1 = 0, I_2 = 0.2A, I_4 = 0.4A.$ $I_3 = -0.2A, I_4 = 0.$ (c) $I_1 = 0, I_2 = 0.2A, I_4 = 0.4A.$