RLC Circuit: Application (1)

In the circuit shown the capacitor is without charge.

When the switch is closed to position *a*...

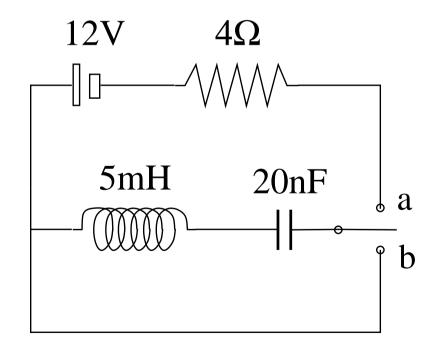
(a) find the initial rate dI/dt at which the current increases from zero,

(b) find the charge Q on the capacitor after a long time.

Then, when the switch is thrown from a to b...

(c) find the time t_1 it takes the capacitor to fully discharge,

(d) find the maximum current I_{max} in the process of discharging.



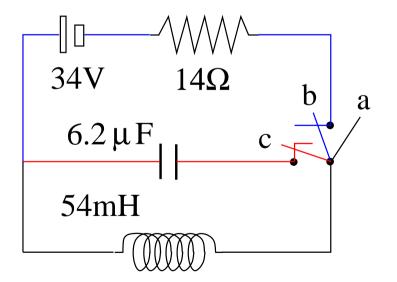
In the circuit shown the capacitor is without charge and the switch is in position a.

(i) When the switch is moved to position *b* we have an *RL* circuit with the current building up gradually: $I(t) = (\mathcal{E}/R)[1 - e^{-t/\tau}].$

Find the time constant τ and the current I_{max} after a long time.

(ii) Then we reset the clock and move the switch from *b* to *c* with no interruption of the current through the inductor. We now have a an *LC* circuit: $I(t) = I_{max} \cos(\omega t)$.

Find the angular frequency of oscillation ω and the maximum charge Q_{max} that goes onto the capacitor periodically.



In the circuit shown the capacitor is without charge and the switch is in position a.

(i) When the switch is moved to position *b* we have an *RC* circuit with the capacitor being charged up gradually: $O(t) - \mathcal{E}C[1 - e^{-t/\tau}]$

up gradually: $Q(t) = \mathcal{E}C[1 - e^{-t/\tau}].$

Find the time constant τ and the charge Q_{max} after a long time.

(ii) Then we reset the clock and move the switch from b to c.

We now have a an *LC* circuit: $Q(t) = Q_{max} \cos(\omega t)$.

Find the angular frequency of oscillation ω and the maximum current I_{max} that flows through the inductor periodically.

