Magnetic flux and Faraday's law

inin ĝana

- Magnetic field \vec{B} (given)
- Surface *S* with perimeter loop (given)
- Surface area A (given)
- Area vector $\vec{A} = A\hat{n}$ (my choice)
- Positive direction around perimeter: ccw (consequence of my choice)

• Magnetic flux:
$$\Phi_B = \int \vec{B} \cdot d\vec{A} = \int \vec{B} \cdot \hat{n} dA$$

- Consider situation with $\frac{d\vec{B}}{dt} \neq 0$
- Induced electric field: \vec{E}
- Induced EMF: $\mathcal{E} = \oint \vec{E} \cdot d\vec{\ell}$ (integral ccw around perimeter)

• Faraday's law:
$$\mathcal{E} = -rac{d\Phi_B}{dt}$$

