Unit Exam II: Problem #1 (Spring '11)

Both capacitor circuits are at equilibrium.

- (a) Find the charge Q_1 on capacitor 1.
- (b) Find the voltage V_3 across capacitor 3.
- (c) Find the charge Q_2 on capacitor 2.
- (d) Find the energy U_4 stored on capacitor 4.

Unit Exam II: Problem #1 (Spring '11)

Both capacitor circuits are at equilibrium.

- (a) Find the charge Q_1 on capacitor 1.
- (b) Find the voltage V_3 across capacitor 3.
- (c) Find the charge Q_2 on capacitor 2.
- (d) Find the energy U_4 stored on capacitor 4.

Solution:

(a)
$$C_{13} = \left(\frac{1}{C_1} + \frac{1}{C_3}\right)^{-1} = 0.75 \text{pF}, \quad Q_1 = Q_3 = Q_{13} = (24 \text{V})(0.75 \text{pF}) = 18 \text{pC}.$$

(b)
$$V_3 = \frac{Q_3}{C_3} = \frac{18 \text{pC}}{3 \text{pF}} = 6 \text{V}.$$

(c)
$$Q_2 = (24V)(2pF) = 48pC$$
.

(d)
$$U_4 = \frac{1}{2}C_4V_4^2 = \frac{1}{2}(4\text{pF})(24\text{V})^2 = 1152\text{pJ}.$$

Unit Exam II: Problem #2 (Spring '11)

Consider the resistor circuit shown.

- (a) Find the current I_L on the left.
- (b) Find the current I_R on the right.
- (c) Find the equivalent resistance R_{eq} of all four resistors.
- (d) Find the power P_2 dissipated in resistor 2.

Unit Exam II: Problem #2 (Spring '11)

Consider the resistor circuit shown.

- (a) Find the current I_L on the left.
- (b) Find the current I_R on the right.
- (c) Find the equivalent resistance R_{eq} of all four resistors.
- (d) Find the power P_2 dissipated in resistor 2.

Solution:

(a)
$$I_L = \frac{24V}{1\Omega + 3\Omega} = 6A$$
.

(b)
$$I_R = \frac{24V}{4\Omega} = 6A$$
.

(c)
$$R_{eq} = \left(\frac{1}{1\Omega + 3\Omega} + \frac{1}{2\Omega} + \frac{1}{4\Omega}\right)^{-1} = 1\Omega.$$

(d)
$$P_2 = \frac{(24V)^2}{2\Omega} = 288W.$$

Unit Exam II: Problem #3 (Spring '11)

Consider the electric circuit shown.

- (a) Find the current I_1 .
- (b) Find the current I_2 .
- (c) Find the current I_3 .
- (d) Find the potential difference $V_a V_b$.

Unit Exam II: Problem #3 (Spring '11)

Consider the electric circuit shown.

- (a) Find the current I_1 .
- (b) Find the current I_2 .
- (c) Find the current I_3 .
- (d) Find the potential difference $V_a V_b$.

Solution:

(a)
$$12V + 3V - I_1(10\Omega) = 0 \implies I_1 = \frac{15V}{10\Omega} = 1.5A.$$

(b)
$$-6V + 12V - I_2(5\Omega) = 0 \implies I_1 = \frac{6V}{5\Omega} = 1.2A.$$

(c)
$$I_3 = I_1 + I_2 = 2.7$$
A.

(d)
$$V_a - V_b = -6V + 12V = 6V$$
.