

Both capacitor circuits are at equilibrium.

(a) In the circuit on the left, the voltage across capacitor 1 is $V_1 = 8V$. Find the charge Q_1 on capacitor 1, the charge Q_2 on capacitor 2, and the voltage V_2 across capacitor 2. Find the emf \mathcal{E}_A supplied by the battery.

(b) In the circuit on the right, the charge on capacitor 3 is $Q_3 = 6\mu$ C. Find the voltage V_3 across capacitor 3, the voltage V_4 across capacitor 4, and the charge Q_4 on capacitor 4. Find the emf \mathcal{E}_B supplied by the battery.

mi

Both capacitor circuits are at equilibrium.

(a) In the circuit on the left, the voltage across capacitor 1 is $V_1 = 8V$. Find the charge Q_1 on capacitor 1, the charge Q_2 on capacitor 2, and the voltage V_2 across capacitor 2. Find the emf \mathcal{E}_A supplied by the battery.

(b) In the circuit on the right, the charge on capacitor 3 is $Q_3 = 6\mu$ C. Find the voltage V_3 across capacitor 3, the voltage V_4 across capacitor 4, and the charge Q_4 on capacitor 4. Find the emf \mathcal{E}_B supplied by the battery.

Solution:

(a)
$$Q_1 = (1\mu F)(8V) = 8\mu C$$
, $Q_2 = Q_1 = 8\mu C$,
 $V_2 = \frac{8\mu C}{2\mu F} = 4V$, $\mathcal{E}_A = 8V + 4V = 12V$.
(b) $V_3 = \frac{6\mu C}{3\mu F} = 2V$, $V_4 = V_3 = 2V$,
 $Q_4 = (2V)(4\mu F) = 8\mu C$, $\mathcal{E}_B = V_3 = V_4 = 2V$.

Unit Exam II: Problem #2 (Spring '09)

Consider the resistor circuit shown.

- (a) Find the equivalent resistance R_{eq} .
- (b) Find the power *P* supplied by the battery.
- (c) Find the current I_4 through the 4Ω -resistor.

(d) Find the voltage V_2 across the 2Ω -resistor.

Unit Exam II: Problem #2 (Spring '09)

Consider the resistor circuit shown.

(a) Find the equivalent resistance R_{eq} .

(b) Find the power *P* supplied by the battery.

(c) Find the current I_4 through the 4Ω -resistor.

(d) Find the voltage V_2 across the 2Ω -resistor.

Solution:

(a)
$$R_{eq} = 8\Omega$$
.
(b) $P = \frac{(24V)^2}{8\Omega} = 72W$.
(c) $I_4 = \frac{1}{2} \frac{24V}{8\Omega} = 1.5A$.
(d) $V_2 = (1.5A)(2\Omega) = 3V$.

Unit Exam II: Problem #3 (Spring '09)

Consider the electric circuit shown. Find the currents I_1 , I_2 , I_3 , and I_4 .

Unit Exam II: Problem #3 (Spring '09)

Consider the electric circuit shown. Find the currents I_1 , I_2 , I_3 , and I_4 .

Solution:

Use loops along quadrants in assumed current directions. Start at center.

 $+3V - I_1(1\Omega) - 1V = 0 \implies I_1 = 2A.$ $+3V - I_2(1\Omega) + 2V = 0 \implies I_2 = 5A.$ $-2V - I_3(1\Omega) + 5V = 0 \implies I_3 = 3A.$ $+1V - I_4(1\Omega) + 5V = 0 \implies I_4 = 6A.$

