

Consider a surface *S* of arbitrary shape in the presence of an electric field \vec{E} . Prescription for the calculation of the electric flux through *S*:

- Divide S into small tiles of area ΔA_i .
- Introduce vector $\Delta \vec{A_i} = \hat{n}_i \Delta A_i$ perpendicular to tile.
 - If S is open choose consistently one of two possible directions for Δ*A*_i.
 If S is closed choose Δ*A*_i to be directed outward.
- Electric field at position of tile *i*: $\vec{E_i}$.
- Electric flux through tile *i*: $\Delta \Phi_i^{(E)} = \vec{E_i} \cdot \Delta \vec{A_i} = E_i \Delta A_i \cos \theta_i.$
- Electric flux through S: $\Phi_E = \sum_i \vec{E}_i \cdot \Delta \vec{A}_i$.
- Limit of infinitesimal tiles: $\Phi_E = \int \vec{E} \cdot d\vec{A}$.
- Electric flux is a scalar.
- The SI unit of electric flux is Nm²/C.

