Unit Exam III: Problem #1 (Spring '08)

Consider two circular currents $I_1 = 3A$ at radius $r_1 = 2m$ and $I_2 = 5A$ at radius $r_2 = 4m$ in the directions shown.

(a) Find magnitude B and direction (\odot, \otimes) of the resultant magnetic field at the center.

(b) Find magnitude μ and direction (\odot, \otimes) of the magnetic dipole moment generated by the two currents.

Unit Exam III: Problem #1 (Spring '08)

Consider two circular currents $I_1 = 3A$ at radius $r_1 = 2m$ and $I_2 = 5A$ at radius $r_2 = 4m$ in the directions shown.

(a) Find magnitude B and direction (\odot, \otimes) of the resultant magnetic field at the center.

(b) Find magnitude μ and direction (\odot, \otimes) of the magnetic dipole moment generated by the two currents.

Solution:

(a)
$$B = \frac{\mu_0(3A)}{2(2m)} - \frac{\mu_0(5A)}{2(4m)} = (9.42 - 7.85) \times 10^{-7} T$$

 $\Rightarrow B = 1.57 \times 10^{-7} T \otimes$
(b) $\mu = \pi (4m)^2 (5A) - \pi (2m)^2 (3A) = (251 - 38) Am^2$
 $\Rightarrow \mu = 213 Am^2 \odot$

Unit Exam III: Problem #2 (Spring '08)

(a) Consider a solid wire of radius R = 3mm.

Find magnitude I and direction (in/out) that produces a magnetic field $B = 7\mu T$ at radius r = 8mm.

(b) Consider a hollow cable with inner radius $R_{int} = 3$ mm and outer radius $R_{ext} = 5$ mm. A current $I_{out} = 0.9$ A is directed out of the plane.

Find direction (up/down) and magnitude B_2 , B_6 of the magnetic field at radius $r_2 = 2$ mm and $r_6 = 6$ mm, respectively.

Unit Exam III: Problem #2 (Spring '08)

(a) Consider a solid wire of radius R = 3mm.

Find magnitude I and direction (in/out) that produces a magnetic field $B = 7\mu T$ at radius r = 8mm.

(b) Consider a hollow cable with inner radius $R_{int} = 3$ mm and outer radius $R_{ext} = 5$ mm. A current $I_{out} = 0.9$ A is directed out of the plane.

Find direction (up/down) and magnitude B_2 , B_6 of the magnetic field at radius $r_2 = 2$ mm and $r_6 = 6$ mm, respectively.

A circular wire of radius r = 2.5m and resistance $R = 4.8\Omega$ is placed in the yz-plane as shown.

A time-dependent magnetic field $\mathbf{B} = B_x \hat{\mathbf{i}}$ is present.

The dependence of B_x on time is shown graphically.

(a) Find the magnitude $|\Phi_B^{(1)}|$ and $|\Phi_B^{(3)}|$ of the magnetic flux through the cicle at times t = 1s and t = 3s, respectively.

(b) Find magnitude I_1, I_3 and direction (cw/ccw) of the induced current at times t = 1s and t = 3s, respectively.

A circular wire of radius r = 2.5m and resistance $R = 4.8\Omega$ is placed in the yz-plane as shown.

A time-dependent magnetic field $\mathbf{B} = B_x \hat{\mathbf{i}}$ is present.

The dependence of B_x on time is shown graphically.

(a) Find the magnitude $|\Phi_B^{(1)}|$ and $|\Phi_B^{(3)}|$ of the magnetic flux through the cicle at times t = 1s and t = 3s, respectively.

(b) Find magnitude I_1, I_3 and direction (cw/ccw) of the induced current at times t = 1s and t = 3s, respectively.

