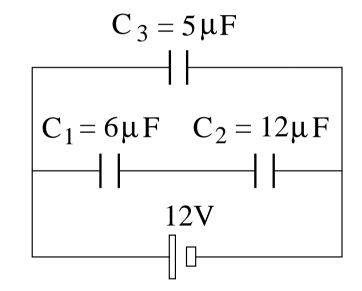


The circuit of capacitors is at equilibrium.

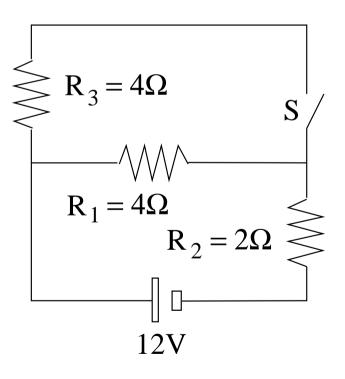
- (a) Find the charge Q_1 on capacitor 1 and the charge Q_2 on capacitor 2.
- (b) Find the voltage V_1 across capacitor 1 and the voltage V_2 across capacitor 2.
- (c) Find the charge Q_3 and the energy U_3 on capacitor 3.



The circuit of capacitors is at equilibrium.

- (a) Find the charge Q_1 on capacitor 1 and the charge Q_2 on capacitor 2.
- (b) Find the voltage V_1 across capacitor 1 and the voltage V_2 across capacitor 2.
- (c) Find the charge Q_3 and the energy U_3 on capacitor 3.

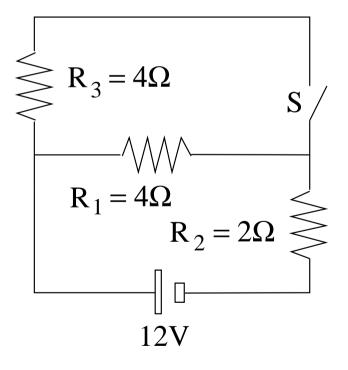
Solution:


(a)
$$C_{12} = \left(\frac{1}{6\mu F} + \frac{1}{12\mu F}\right)^{-1} = 4\mu F,$$

 $Q_1 = Q_2 = Q_{12} = (4\mu F)(12V) = 48\mu C$
(b) $V_1 = \frac{Q_1}{C_1} = \frac{48\mu C}{6\mu F} = 8V,$
 $V_2 = \frac{Q_2}{C_2} = \frac{48\mu C}{12\mu F} = 4V.$
(c) $Q_3 = (5\mu F)(12V) = 60\mu C,$
 $U_3 = \frac{1}{2}(5\mu F)(12V)^2 = 360\mu J.$

Consider the electric circuit shown. Find the current I_1 through resistor 1 and the voltage V_1 across it

- (a) when the switch S is open,
- (b) when the switch S is closed.
- (c) Find the equivalent resistance R_{eq} of the circuit and the total power P dissipated in it when the switch S is closed.



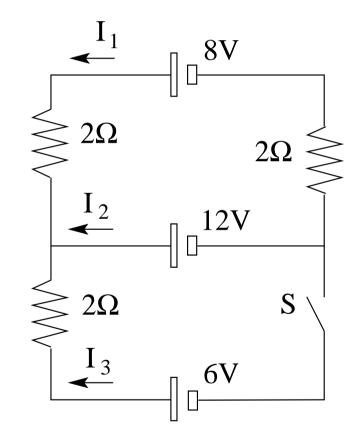
Consider the electric circuit shown. Find the current I_1 through resistor 1 and the voltage V_1 across it

- (a) when the switch S is open,
- (b) when the switch S is closed.
- (c) Find the equivalent resistance R_{eq} of the circuit and the total power P dissipated in it when the switch S is closed.

Solution:

(a)
$$I_1 = \frac{12V}{4\Omega + 2\Omega} = 2A, \quad V_1 = (4\Omega)(2A) = 8V.$$

(b) $I_1 = \frac{1}{2} \frac{12V}{2\Omega + 2\Omega} = 1.5A, \quad V_1 = (4\Omega)(1.5A) = 6V.$
(c) $R_{eq} = \left(\frac{1}{4\Omega} + \frac{1}{4\Omega}\right)^{-1} + 2\Omega = 4\Omega,$
 $P = \frac{(12V)^2}{4\Omega} = 36W.$

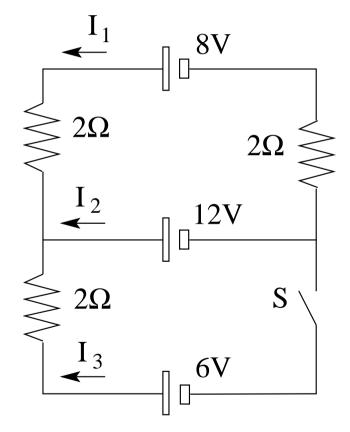


Unit Exam II: Problem #3 (Spring '08)

Consider the electric circuit shown. Find the currents I_1 , I_2 , and I_3

- (a) with the switch S open,
- (b) with the switch S closed.

Unit Exam II: Problem #3 (Spring '08)



Consider the electric circuit shown. Find the currents I_1 , I_2 , and I_3

- (a) with the switch S open,
- (b) with the switch S closed.

Solution:

(a)
$$I_1 = \frac{8V - 12V}{4\Omega} = -1A$$
,
 $I_2 = -I_1 = +1A$.
 $I_3 = 0$.
(b) $I_1 = \frac{8V - 12V}{4\Omega} = -1A$,
 $I_3 = \frac{6V - 12V}{2\Omega} = -3A$.
 $I_2 = -I_1 - I_3 = +4A$.

