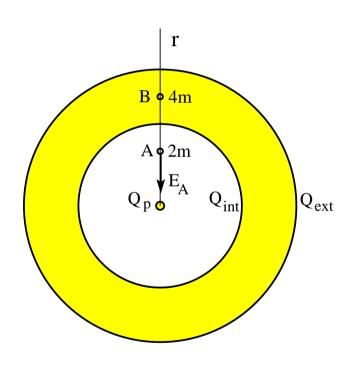


Consider the configuration of two point charges as shown.

- (a) Find magnitude and direction of the force \mathbf{F}_{21} exerted by q_2 on q_1 .
- (b) Find magnitude and direction of the electric field \mathbf{E}_A at point P_A .
- (c) Find the electric potential V_B at point P_B .

Solution:

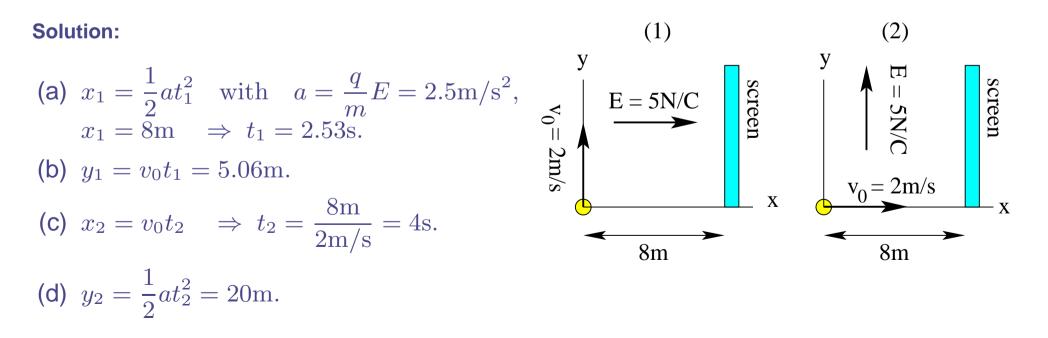

(a)
$$F_{12} = k \frac{|3nC|^2}{(8m)^2} = 1.27nN$$
 (directed right).
(b) $E_A = 2k \frac{|3nC|}{(4m)^2} = 3.38N/C$ (directed right).
(c) $V_B = k \frac{(+3nC)}{12m} + k \frac{(-3nC)}{4m} = -4.50V.$

A point charge Q_p is positioned at the center of a conducting spherical shell of inner radius $r_2 = 3.00$ m and outer radius $r_3 = 5.00$ m. The total charge on the shell $Q_s = +7.00$ nC. The electric field at point A has strength $E_A = 6.75$ N/C and is pointing radially inward.

- (a) Find the value of Q_p (point charge).
- (b) Find the charge Q_{int} on the inner surface of the shell.
- (c) Find the charge Q_{ext} on the outer surface of the shell.
- (d) Find the electric field at point B.

Solution:

- (a) Gauss' law implies that $-E_A(4\pi r_A^2) = \frac{Q_p}{\epsilon_0}$ $\Rightarrow Q_p = -3.00$ nC.
- (b) Gauss' law implies that $Q_{int} = -Q_p = +3.00$ nC.
- (c) Charge conservation, $Q_{int} + Q_{ext} = Q_s = 7.00$ nC, then implies that $Q_{ext} = +4.00$ nC.
- (d) $E_B = 0$ inside conductor.



Consider two regions of uniform electric field as shown. Charged particles of mass m = 2kg and charge q = 1C are projected at time t = 0 with initial velocities as shown. Both particles will hit the screen eventually. Ignore gravity.

- (a) At what time t_1 does the particle in region (1) hit the screen?
- (b) At what height y_1 does the particle in region (1) hit the screen?
- (c) At what time t_2 does the particle in region (2) hit the screen?
- (d) At what height y_2 does the particle in region (2) hit the screen?

