

Consider two infinitely long, straight wires with currents of equal magnitude $I_1 = I_2 = 5$ A in the directions shown. Find the direction (in/out) and the magnitude of the magnetic fields \mathbf{B}_1 and \mathbf{B}_2 at the points marked in the graph.

•
$$B_1 = \frac{\mu_0}{2\pi} \left(\frac{5A}{4m} - \frac{5A}{4m} \right) = 0$$
 (no direction).
• $B_2 = \frac{\mu_0}{2\pi} \left(\frac{5A}{2m} - \frac{5A}{4m} \right) = 0.25\mu T$ (out of plane).
 $I_a \uparrow B_1 = B_1 = B_1 = B_1$
 $I_a \uparrow B_1 = B_1 = B_1 = B_1$
 $I_a \uparrow B_1$
 $I_b = B_1 = B_1$
 $I_b = B_2$
 $I_$

A conducting loop in the shape of a square with area $A = 4m^2$ and resistance $R = 5\Omega$ is placed in the *yz*-plane as shown. A time-dependent magnetic field $\mathbf{B} = B_x \hat{\mathbf{i}}$ is present. The dependence of B_x on time is shown graphically. (a) Find the magnetic flux Φ_B through the loop at time t = 0.

(b) Find magnitude and direction (cw/ccw) of the induced current I at time t = 2s.

Choice of area vector: $\odot/\otimes \Rightarrow$ positive direction = ccw/cw.

(a)
$$\Phi_B = \pm (1T)(4m^2) = \pm 4Tm^2$$
.
(b) $\frac{d\Phi_B}{dt} = \pm (0.5T/s)(4m^2) = \pm 2V \qquad \Rightarrow \quad \mathcal{E} = -\frac{d\Phi_B}{dt} = \mp 2V.$
 $\Rightarrow I = \frac{\mathcal{E}}{R} = \mp \frac{2V}{5\Omega} = \mp 0.4A$ (cw).

In the circuit shown the switch S is initially open.
Find the current I through the battery
(a) while the switch is open,
(b) immediately after the switch has been closed,
(c) a very long time later.

(a)
$$I = \frac{12V}{2\Omega + 3\Omega + 6\Omega} = 1.09A.$$

(b) $I = \frac{12V}{2\Omega + 3\Omega + 6\Omega} = 1.09A.$
(c) $I = \frac{12V}{2\Omega + 3\Omega} = 2.4A.$

Intermediate Exam III: Problem #4 (Spring '06)

Consider the circuit shown. The *ac* voltage supplied is $\mathcal{E} = \mathcal{E}_{max} \cos(\omega t)$ with $\mathcal{E}_{max} = 170$ V and $\omega = 377$ rad/s.

- (a) What is the maximum value I_{max} of the current?
- (b) What is the emf \mathcal{E} at t = 0.02s?
- (c) What is the current I at t = 0.02s?

(a)
$$I_{max} = \frac{\mathcal{E}_{max}}{X_L} = \frac{\mathcal{E}_{max}}{\omega L} = \frac{170\text{V}}{11.3\Omega} = 15.0\text{A}.$$

(b) $\mathcal{E} = \mathcal{E}_{max} \cos(7.54\text{rad}) = (170\text{V})(0.309) = 52.5\text{V}.$
(c) $I = I_{max} \cos(7.54\text{rad} - \pi/2) = (15.0\text{A})(0.951) = 14.3\text{A}.$

