

The circuit of capacitors connected to a battery is at equilibrium.

- (a) Find the charge Q_3 on capacitor C_3 .
- (b) Find the charge Q_2 on capacitor C_2 .

- (a) $Q_3 = C_3(12V) = (3\mu F)(12V) = 36\mu C.$
- (b) $Q_2 = Q_{12} = C_{12}(12V) = (1\mu F)(12V) = 12\mu C.$

Intermediate Exam II: Problem #2 (Spring '06)

Consider the two-loop circuit shown.

- (a) Find the current I_1 .
- (b) Find the current I_2 .

(a)
$$-(2\Omega)(I_1) + 10V - (2\Omega)(I_1) - 2V = 0 \Rightarrow I_1 = \frac{8V}{4\Omega} = 2A.$$

(b) $-(2\Omega)(I_2) + 10V - (2\Omega)(I_2) - (3\Omega)(I_2) = 0 \Rightarrow I_2 = \frac{10V}{7\Omega} = 1.43A.$

In this *RC* circuit the switch S is initially open as shown.

- (a) Find the current *I* right after the switch has been closed.
- (b) Find the current I a very long time later.

- (a) No current through 2Ω -resistor: $I = \frac{12V}{4\Omega} = 3A$.
- (b) No current through capacitor: $I = \frac{12V}{6\Omega} = 2A$.

A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude B = 30mT as shown. The current in the loop is I = 0.4A in the direction indicated.

- (a) Find magnitude and direction of the force $\vec{F_1}$ on side 1 of the triangle.
- (b) Find magnitude and direction of the force \vec{F}_2 on side 2 of the triangle.

- (a) $\vec{F}_1 = I\vec{L} \times \vec{B} = 0$ (angle between \vec{L} and \vec{B} is 180°).
- (b) $F_2 = ILB = (0.4 \text{A})(0.2 \text{m})(30 \times 10^{-3} \text{T}) = 2.4 \times 10^{-3} \text{N}.$ Direction of $\vec{F_2}$: \otimes (into plane).

