

The electric field \vec{E} generated by the two point charges, 3nC and q_1 (unknown), has the direction shown.

- (a) Find the magnitude of \vec{E} .
- (b) Find the value of q_1 .

Solution:

(a)
$$E_y = k \frac{3nC}{(2m)^2} = 6.75 \text{N/C},$$

 $E_x = E_y,$
 $E = \sqrt{E_x^2 + E_y^2} = 9.55 \text{N/C}.$
(b) $E_x = k \frac{(-q_1)}{(4m)^2},$
 $q_1 = -\frac{(6.75 \text{N/C})(16m^2)}{k} = -12 \text{nC}.$

Consider a point charge Q = 5nC fixed at position x = 0.

- (a) Find the electric potential V_1 at position $x_1 = 3m$ and the electric potiential V_2 at position $x_2 = 6m$.
- (b) If a charged particle (q = 4nC, m = 1.5ng) is released from rest at x_1 , what are its kinetic energy K_2 and its velocity v_2 when it reaches position x_2 ?

$$Q = 5nC$$

$$(f)$$

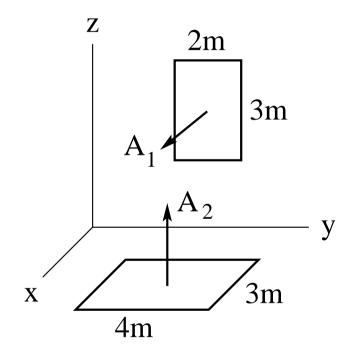
$$x = 0$$

$$x_1 = 3m$$

$$x_2 = 6m$$

(a)
$$V_1 = k \frac{Q}{x_1} = 15 \text{V}, \quad V_2 = k \frac{Q}{x_2} = 7.5 \text{V}.$$

(b) $\Delta U = q(V_2 - V_1) = (4\text{nC})(-7.5 \text{V}) = -30\text{nJ} \Rightarrow \Delta K = -\Delta U = 30\text{nJ}.$
 $\Delta K = K_2 = \frac{1}{2}mv_2^2 \Rightarrow v_2 = \sqrt{\frac{2K_2}{m}} = 200 \text{m/s}.$

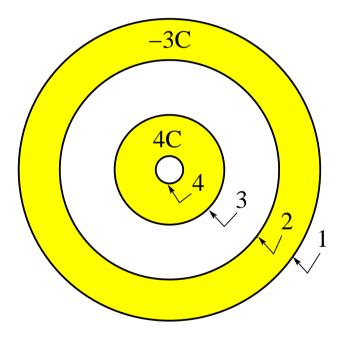

Consider two plane surfaces with area vectors $\vec{A_1}$ (pointing in positive *x*-direction) and $\vec{A_2}$ (pointing in positive *z*-direction). The region is filled with a uniform electric field $\vec{E} = (2\hat{i} + 7\hat{j} - 3\hat{k})$ N/C.

- (a) Find the electric flux $\Phi_E^{(1)}$ through area A_1 .
- (b) Find the electric flux $\Phi_E^{(2)}$ through area A_2 .

Solution:

(a)
$$\vec{A}_1 = 6\hat{i}\,\mathrm{m}^2$$
,
 $\Phi_E^{(1)} = \vec{E} \cdot \vec{A}_1 = (2\mathrm{N/C})(6\mathrm{m}^2) = 12\mathrm{Nm}^2/\mathrm{C}.$

(b)
$$\vec{A}_2 = 12\hat{k}\,\mathrm{m}^2$$
,
 $\Phi_E^{(2)} = \vec{E} \cdot \vec{A}_2 = (-3\mathrm{N/C})(12\mathrm{m}^2) = -36\mathrm{Nm}^2/\mathrm{C}.$



Consider two concentric conducting spherical shells. The total electric charge on the inner shell is 4C and the total electric charge on the outer shell is -3C. Find the electric charges q_1, q_2, q_3, q_4 on each surface of both shells as identified in the figure.

Solution:

Start with the innermost surface. Note that any excess charge is located at the surface of a conductor. Note also that the electric field inside a conductor at equilibrium vanishes.

- Gauss' law predicts $q_4 = 0$.
- Charge conservation then predicts $q_3 + q_4 = 4$ C. Hence $q_3 = 4$ C.
- Gauss' law predicts $q_2 = -(q_3 + q_4) = -4$ C.
- Charge conservation then predicts $q_1 + q_2 = -3C$. Hence $q_1 = +1C$.

