Electromagnetic Plane Wave (1)

Maxwell's equations for electric and magnetic fields in free space (no sources):

- Gauss' laws: $\oint \vec{E} \cdot d\vec{A} = 0$, $\oint \vec{B} \cdot d\vec{A} = 0$.
- Faraday's and Ampère's laws: $\oint \vec{E} \cdot d\vec{\ell} = -\frac{d\Phi_B}{dt}$, $\oint \vec{B} \cdot d\vec{\ell} = \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$.

Consider fields of particular directions and dependence on space:

$$\vec{E} = E_y(x,t)\hat{j}, \quad \vec{B} = B_z(x,t)\hat{k}.$$

Gauss' laws are then automatically satisfied.

Use the cubic Gaussian surface to show that

- the net electric flux Φ_E is zero,
- the net magnetic flux Φ_B is zero.

Electromagnetic Plane Wave (2)

- Faraday's law, $\oint \vec{E} \cdot d\vec{\ell} = -\frac{d\Phi_B}{dt}$, applied to loop in (x,y)-plane becomes $[E_y(x+dx,t)-E_y(x,t)]dy = -\frac{\partial}{\partial t}B_z(x,t)dxdy$ $\Rightarrow \frac{\partial}{\partial x}E_y(x,t) = -\frac{\partial}{\partial t}B_z(x,t)$ (F)
- Ampère's law, $\oint \vec{B} \cdot d\vec{\ell} = \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$, applied to loop in (x,z)-plane becomes $[-B_z(x+dx,t)+B_z(x,t)]dz = \mu_0 \epsilon_0 \frac{\partial}{\partial t} E_y(x,t) dx dz$ $\Rightarrow -\frac{\partial}{\partial x} B_z(x,t) = \mu_0 \epsilon_0 \frac{\partial}{\partial t} E_y(x,t) \qquad (A)$

Z

Electromagnetic Plane Wave (3)

Take partial derivatives $\frac{\partial}{\partial x}$ (F) and $\frac{\partial}{\partial t}$ (A): $\frac{\partial^2 E_y}{\partial x^2} = -\frac{\partial^2 B_z}{\partial t \partial x}$, $-\frac{\partial^2 B_z}{\partial t \partial x} = \mu_0 \epsilon_0 \frac{\partial^2 E_y}{\partial t^2}$.

$$\Rightarrow \frac{\partial^2 E_y}{\partial t^2} = c^2 \frac{\partial^2 E_y}{\partial x^2}$$

 $\Rightarrow \frac{\partial^2 E_y}{\partial t^2} = c^2 \frac{\partial^2 E_y}{\partial x^2}$ (E) (wave equation for electric field).

Take partial derivatives $\frac{\partial}{\partial t}(F)$ and $\frac{\partial}{\partial x}(A)$: $\frac{\partial^2 E_y}{\partial t \partial x} = -\frac{\partial^2 B_z}{\partial t^2}$, $-\frac{\partial^2 B_z}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 E_y}{\partial t \partial x}$.

$$\Rightarrow \frac{\partial^2 B_z}{\partial t^2} = c^2 \frac{\partial^2 B_z}{\partial x^2}$$
 (B)

 $\Rightarrow \frac{\partial^2 B_z}{\partial x^2} = c^2 \frac{\partial^2 B_z}{\partial x^2}$ (B) (wave equation for magnetic field).

$$c=rac{1}{\sqrt{\epsilon_0\mu_0}}$$
 (speed of light).

Sinusoidal solution:

- $E_u(x,t) = E_{max} \sin(kx \omega t)$
- $B_z(x,t) = B_{max} \sin(kx \omega t)$

Electromagnetic Plane Wave (4)

For given wave number k the angular frequency ω is determined, for example by substitution of $E_{max}\sin(kx-\omega t)$ into (E).

For given amplitude E_{max} the amplitude B_{max} is determined, for example, by substituting $E_{max}\sin(kx-\omega t)$ and $B_{max}\sin(kx-\omega t)$ into (A) or (F).

$$\Rightarrow \frac{\omega}{k} = \frac{E_{max}}{B_{max}} = c.$$

The direction of wave propagation is determind by the Poynting vector:

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}.$$

