Mechanical Oscillator with Damping

• law of motion: F = ma, $a = \frac{d^2x}{dt^2}$

• law of force:
$$F = -kx - bv$$
, $v = \frac{dx}{dt}$

• equation of motion:
$$\frac{d^2x}{dt^2} + \frac{b}{m} \frac{dx}{dt} + \frac{k}{m} x = 0$$

Solution for initial conditions x(0) = A, v(0) = 0:

(a) underdamped motion: $b^2 < 4km$

$$x(t) = Ae^{-bt/2m} \left[\cos(\omega't) + \frac{b}{2m\omega'} \sin(\omega't) \right] \quad \text{with} \quad \omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$

(b) overdamped motion: $b^2 > 4km$

$$x(t) = Ae^{-bt/2m} \left[\cosh(\Omega't) + \frac{b}{2m\Omega'} \sinh(\Omega't) \right] \quad \text{with} \quad \Omega' = \sqrt{\frac{b^2}{4m^2} - \frac{k}{m^2}}$$

