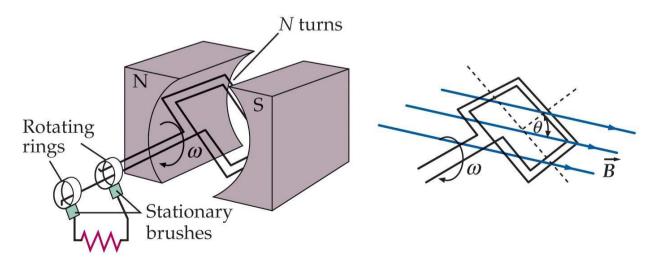


Coil of N turns and cross-sectional area A rotating with angular frequency  $\omega$  in uniform magnetic field  $\vec{B}$ .


- Angle between area vector and magnetic field vector:  $\theta = \omega t$ .
- Flux through coil:  $\Phi_B = NBA\cos(\omega t)$ .

• Induced EMF:  $\mathcal{E} = -\frac{d\Phi_B}{dt} = \mathcal{E}_{max} \sin(\omega t)$  with amplitude  $\mathcal{E}_{max} = NBA\omega$ .

• U.S. household outlet values:

• 
$$\mathcal{E}_{max} = 120 \mathrm{V} \sqrt{2} \simeq 170 \mathrm{V}$$

• 
$$f = 60$$
Hz,  $\omega = 2\pi f \simeq 377$ rad/s.

